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Every Large Point Set contains Many Collinear Points or an Empty Pentagon

Zachary Abel∗ Brad Ballinger† Prosenjit Bose‡ Sébastien Collette§ Vida Dujmović¶
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Abstract

We prove the following generalised empty pentagon the-
orem: for every integer ` ≥ 2, every sufficiently large
set of points in the plane contains ` collinear points or
an empty pentagon. As an application, we settle the
next open case of the “big line or big clique” conjec-
ture of Kára, Pór, and Wood [Discrete Comput. Geom.
34(3):497–506, 2005].

1 Introduction

While the majority of theorems and problems about sets
of points in the plane assume that the points are in
general position, there are many interesting theorems
and problems about sets of points with collinearities.
The Sylvester-Gallai Theorem and the orchard problem
are some examples; see [3]. The main contribution of
this paper is to extend the ‘empty pentagon’ theorem
about point sets in general position to point sets with
collinearities.

1.1 Definitions

We begin with some standard definitions. Let P be a
finite set of points in the plane. We say that P is in
general position if no three points in P are collinear.
Let conv(P ) denote the convex hull of P . We say that
P is in convex position if every point of P is on the
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boundary of conv(P ). A point v ∈ P is a corner of P
if conv(P − v) 6= conv(P ). We say that P is in strictly
convex position if each point of P is a corner of P . A
strictly convex k-gon is the convex hull of k points in
strictly convex position. If X ⊆ P is a set of k points
in strictly convex position and conv(X) ∩ P = X, then
conv(X) is called a k-hole (or an empty strictly convex
k-gon) of P . A 4-hole is called an empty quadrilateral,
a 5-hole is called an empty pentagon, a 6-hole is called
an empty hexagon, etc.

1.2 Erdős-Szekeres Theorem

The Erdős-Szekeres Theorem [6] states that for every
integer k there is a minimum integer ES(k) such that
every set of at least ES(k) points in general position in
the plane contains k points in convex position (which
are therefore in strictly convex position). The following
generalisation of the Erdős-Szekeres Theorem for point
sets with collinearities is easily proved by applying a
suitable perturbation of the points:

Theorem 1 ([1]) For every integer k every set of at
least ES(k) points in the plane contains k points in con-
vex position.

The Erdős-Szekeres Theorem generalises for points in
strictly convex position as follows:

Theorem 2 ([1]) For all integers ` ≥ 2 and k ≥ 3
there is a minimum integer ES(k, `) such that every
set of at least ES(k, `) points in the plane contains `
collinear points, or k points in strictly convex position.
Moreover, for all k ≥ 3 and ` ≥ 3, if k is odd then

ES(k, `) ≤ ES( 1
2 (k − 1)(`− 1) + 1) ,

and if k is even then

ES(k, `) ≤ ES( 1
2 (k − 2)(`− 1) + 2) .

Moreover, for all k ≥ 3 and ` ≥ 3,

ES(k, `) ≤ (`− 3)
(

ES(k)− 1
2

)
+ ES(k) .

The best known upper bound on ES(k), due to Tóth
and Valtr [13], is

ES(k) ≤
(

2k − 5
k − 2

)
+ 1 ∈ O

(
22k

√
k

)
.

Using Theorem 2, bounds on ES(k, `) are easily derived.
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1.3 Empty Polygons

Attempting to strengthen the Erdős-Szekeres Theorem,
Erdős [5] asked whether for each fixed k every suffi-
ciently large set of points in general position contains a
k-hole. Harborth [8] answered this question in the affir-
mative for k ≤ 5, by showing that every set of at least
ten points in general position contains a 5-hole. On
the other hand, Horton [9] answered Erdős’ question in
the negative for k ≥ 7, by constructing arbitrarily large
sets of points in general position that contain no 7-hole.
The remaining case of k = 6 was recently solved inde-
pendently by Gerken [7] and Nicolás [12], who proved
that every sufficiently large set of points in general po-
sition contains a 6-hole. The above results do not easily
generalise to sets with a bounded number of collinear
points (as in Theorem 2). Nevertheless, we prove the
following ‘generalised empty pentagon’ theorem, which
is the main contribution of this paper.

Theorem 3 For every integer ` ≥ 2, every finite set
of at least ES( (2`−1)`−1

2`−2 ) points in the plane contains `
collinear points, or a 5-hole.

Note that Eppstein [4] characterised the point sets
with no 5-hole in terms of the acyclicity of an associated
quadrilateral graph. However, it is not clear how this
result can be used to prove Theorem 3.

1.4 Big Line or Big Clique Conjecture

Theorem 3 has an important ramification for the fol-
lowing “big line or big clique” conjecture by Kára et al.
[10]. Let P be a finite set of points in the plane. Dis-
tinct points v, w ∈ P are visible with respect to P if
P ∩ vw = {v, w}, where vw denotes the closed line seg-
ment between v and w. The visibility graph of P has
vertex set P , where distinct points v, w ∈ P are adjacent
if and only if they are visible with respect to P .

Conjecture 1 ([10]) For all integers k and ` there is
an integer n such that every finite set of at least n points
in the plane contains ` collinear points, or k pairwise
visible points (that is, the visibility graph contains a k-
clique).

Conjecture 1 has recently attracted considerable at-
tention [2, 10, 11]. It is trivially true for ` ≤ 3 and
all k. Kára et al. [10] proved it for k ≤ 4 and all `.
Addario-Berry et al. [2] proved it in the case that k = 5
and ` = 4. Here we prove the next case of Conjecture 1
for infinitely many values of `.

Theorem 4 Conjecture 1 is true for k = 5 and all `.

Proof. By Theorem 3, every sufficiently large set of
points contains ` collinear points (in which case we are

done) or a 5-hole H. Let H ′ be a 5-hole contained in
H with minimum area. Then the corners of H ′ are
five pairwise visible points (otherwise there is a 5-hole
contained in H with less area; see Figure 1). �

Figure 1: Every 5-hole contains 5 pairwise visible points.

2 Proof of Theorem 3

The proof of Theorem 3 loosely follows the proof of the
6-hole theorem for points in general position by Valtr
[14], which in turn is a simplification of the proof by
Gerken [7]. For distinct points a, b, c in the plane, let
∆[a, b, c] be the closed triangle determined by a, b, c, and
let ∆(a, b, c) be the open triangle determined by a, b, c.
For integers n ≤ m, let [n, m] := {n, n + 1, . . . ,m} and
[n] := [1, n].

Consider the following problem (which is also relevant
to the proof of Theorem 2): given a set P of points in
convex position, choose a large subset of P in strictly
convex position. For integers k ≥ 1 and ` ≥ 1, let q(k, `)
be the minimum integer such that every set of at least
q(k, `) points in the plane in convex position contains `
collinear points or k points in strictly convex position.
It is reasonably straightforward to determine q(k, `) as
follows [1]:

q(k, `) =



min{k, `} if k ≤ 2 or ` ≤ 2
` for ` ≥ 1 and k = 3
k for ` = 3 and k ≥ 1
1
2 (`− 1)(k − 1) + 1 for ` ≥ 3 and odd k ≥ 3
1
2 (`− 1)(k − 2) + 2 for ` ≥ 3 and even k ≥ 4

Proof of Theorem 3. Fix ` ≥ 3 and let k := (2`−1)`−1
2`−2 ,

which is an integer. Let P be a set of at least ES(k)
points in the plane. By Theorem 1, P contains k points
in convex position. Suppose for the sake of contradiction
that P contains no ` collinear points and no 5-hole.

A set X of at least k points in P in convex position
is said to be k-minimal if there is no set Y of at least
k points in P in convex position, such that conv(Y ) (
conv(X). As illustrated in Figure 2, let A1 be a k-
minimal subset of P . Let A2, . . . , A`−1 be the convex
layers inside A1. More precisely, for i = 2, . . . , ` − 1,
let Ai be the set of points in P on the boundary of
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Figure 2: Definition of A1, . . . , A`.

the convex hull of (P ∩ conv(Ai−1))− Ai−1. Let A` :=
(P ∩ conv(A`−1))−A`−1.

Since q(5, `) = 2` − 1, for each i ∈ [2, `], any 2` − 1
consecutive points of Ai−1 contains five points in strictly
convex position. Thus the convex hull of any 2` − 1
consecutive points of Ai−1 contains a point in Ai, as
otherwise it would contain a 5-hole. Now Ai−1 con-
tains

⌊
|Ai−1|
2`−1

⌋
disjoint subsets, each consisting of 2`− 1

consecutive points, and the convex hull of each subset
contains a point in Ai. Since the convex hulls of these
subsets of Ai−1 are disjoint,

|Ai| ≥
⌊
|Ai−1|
2`− 1

⌋
>
|Ai−1|
2`− 1

− 1 ,

implying |Ai−1| < (2`−1)(|Ai|+1). Suppose that Ai =
∅ for some i ∈ [2, `]. Thus |Ai−1| < 2`−1 and |Ai−2| <
(2`− 1)2 + (2`− 1), and by induction,

|A1| <
i−1∑
j=1

(2`−1)j <
(2`− 1)i − 1

2`− 2
≤ (2`− 1)` − 1

2`− 2
= k ,

which is a contradiction. Now assume that Ai 6= ∅ for
all i ∈ [`]. Fix a point z ∈ A`.

Note that if |Ai| ≤ 2 for some i ∈ [`− 1] then Ai+1 =
∅. Thus we may assume that |Ai| ≥ 3 for all i ∈ [` −
1]. Consider each such set Ai to be ordered clockwise
around conv(Ai). If x and y are consecutive points in Ai

with y clockwise from x then we say that the oriented
segment −→xy is an arc of Ai.

Let −→xy be an arc of Ai for some i ∈ [`−2]. We say that
−→xy is empty if ∆(x, y, z) ∩ Ai+1 = ∅, as illustrated in
Figure 3(a). In this case, the intersection of the bound-
ary of conv(Ai+1) and ∆(x, y, z) is contained in an arc
−→pq. We call −→pq the follower of −→xy.

Claim 1 If −→pq is the follower of an empty arc −→xy, then
{x, y, p, q} is a 4-hole and −→pq is empty.

Proof. Say −→xy is an arc of Ai, where i ∈ [` − 2]. Let
S := {x, y, p, q}. Since p and q are in the interior of

x y

z

p q

Ai Ai+1

(a)

x y

z

r

p q

(b)

Figure 3:

conv(Ai), both x and y are corners of S. Both p and q
are corners of S, as otherwise −→xy is not empty. Thus S is
in strictly convex position. S is empty by the definition
of Ai+1. Thus S is a 4-hole.

Suppose that −→pq is not empty; that is, ∆(p, q, z) ∩
Ai+2 6= ∅. Let r be a point in ∆(p, q, z)∩Ai+2 closest to
pq. Thus ∆(p, q, r)∩P = ∅. Since {x, y, p, q} is a 4-hole,
{x, y, p, q, r} is a 5-hole, as illustrated in Figure 3(b).
This contradiction proves that −→pq is empty. �

As illustrated in Figure 4(a)–(c), we say the follower
−→pq of −→xy is:

• double-aligned if p ∈ xz and q ∈ yz,
• left-aligned if p ∈ xz and q 6∈ yz,
• right-aligned if p 6∈ xz and q ∈ yz.

Claim 2 If −→pq is the follower of an empty arc −→xy,
then −→pq is either double-aligned or left-aligned or right-
aligned.

Proof. Suppose that −→pq is neither double-aligned nor
left-aligned nor right-aligned, as illustrated in Fig-
ure 4(d). Since −→xy is empty, p 6∈ ∆[x, y, z] and q 6∈
∆[x, y, z]. Let D := (P ∩ ∆[p, q, z]) − {p, q}. Thus
z ∈ D and D 6= ∅. Let r be a point in D closest to
pq. Thus ∆(r, p, q) is empty. By Claim 1, {x, y, p, q}
is a 4-hole. Thus {x, y, p, q, r} is a 5-hole, which is the
desired contradiction. �

Suppose that no arc of A1 is empty. That is,
∆(x, y, z)∩A2 6= ∅ for each arc −→xy of A1. Observe that
∆(x, y, z)∩∆(p, q, z) = ∅ for distinct arcs −→xy and −→pq of
A1 (since these triangles are open). Thus |A2| ≥ |A1|,
which contradicts the minimality of A1.

Now assume that some arc −−→x1y1 of A1 is empty.
For i = 2, 3, . . . , ` − 1, let −−→xiyi be the follower of
−−−−−→xi−1yi−1. By Claim 1 (at each iteration), −−→xiyi is empty.
For some i ∈ [2, ` − 2], the arc −−→xiyi is not double-
aligned, as otherwise {x1, x2, . . . , x`−2, z} are collinear
and {y1, y2, . . . , y`−2, z} are collinear, which implies that
{x1, x2, . . . , x`−1, z} are collinear or {y1, y2, . . . , y`−1, z}
are collinear by Claim 2. Let i be the minimum integer
in [2, `−2] such that −−→xiyi is not double-aligned. Without
loss of generality, −−→xiyi is left-aligned. On the other hand,
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Figure 4:

−−→xjyj is not left-aligned for all j ∈ [i + 1, ` − 1], as oth-
erwise {x1, x2, . . . , x`−1, z} are collinear. Let j be the
minimum integer in [i+1, `−1] such that −−→xjyj is not left-
aligned. Thus −−−−−−→xj−1yj−1 is left-aligned and −−→xjyj is not
left-aligned. It follows that {xj−2, yj−2, yj−1, yj , xj−1}
is a 5-hole, as illustrated in Figure 4(e). This contra-
diction proves that P contains ` collinear points or a
5-hole. �

We expect that the lower bound on |P | in Theorem 3
is far from optimal. All known point sets with at most
` collinear points and no 5-hole have O(`2) points, the
`× ` grid for example. See [4, 10] for other examples.

Open Problem. For which values of ` is there an
integer n such that every set of at least n points in the
plane contains ` collinear points or a 6-hole?

This is true for ` = 3 by the empty hexagon theorem.
If this question is true for a particular value of ` then
Conjecture 1 is true for k = 6 and the same value of `.
For k ≥ 7 different methods are needed since there are
point sets in general position with no 7-hole.
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