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1 Introduction (for lack of a better section header)

There are generally two opposite approaches to Olympiad geometry. Some prefer to draw the diagram and simply
stare (labeling points only clutters the diagram!), waiting for the interactions between the problem’s various elements
to present themselves visually. Others toss the diagram onto the complex or coordinate plane and attempt to
establish the necessary connections through algebraic calculation rather than geometric insight.

This article discusses an interesting way to visualize and approach a variety of geometry problems by combining
these two common methods: synthetic and analytic. We’ll focus on a theorem known as “The Fundamental Theorem
of Directly Similar Figures” [4] or “The Mean Geometry Theorem” (abbreviated here as MGT). Although the result
is quite simple, it nevertheless encourages a powerful new point of view.

1.1 Basic Definitions

A figure has positive orientation if its vertices are listed in counterclockwise order (like pentagons ABCDE or
LMNOP in diagram 1), and otherwise it has negative orientation (like V WXY Z or even EDCBA). Two figures
are similar if. . . , well, we’re all familiar with similar figures; two similar figures are directly similar if they have the
same orientation, and otherwise they’re inversely similar. For example, pentagon ABCDE is directly similar to
pentagon LMNOP , but inversely similar to V WXY Z.

A B

C

D

E

L

MN

O

P

V

W

X

Y
Z

Figure 1: Direct and inverse similarity

1.2 Point Averages

A

B

N = 2
3A + 1

3B

1
2A + 1

2B = M

Figure 2: Point averaging

Now for some non-standard notation. We define the average of two points

A and B as the midpoint M of segment AB, and we write 1
2A+ 1

2B = M .
We can also compute weighted averages with weights other than 1

2 and
1
2 , as long as the weights add to 1: the weighted average (1− k)A + (k)B
is the point X on line AB so that AX/AB = k. (This is consistent with
the complex-number model of the plane, though we will still treat A and
B as points rather than complex values.) For example, N = 2

3A + 1
3B is

one-third of the way across from A to B (see Figure 2).

1.3 Figure Averages

We can use the concept of averaging points to define the (weighted) average of two figures, where a figure may
be a polygon, circle, or any other 2-dimensional path or region (this article will stick to polygons). To average two
figures, simply take the appropriate average of corresponding pairs of points. For polygons, we need only average
corresponding vertices:
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1
2
Ai +

1
2
Bi = Ci for i = 1, 2, 3, 4, so

1
2
A1A2A3A4 +

1
2
B1B2B3B4 = C1C2C3C4.

A1

A2

A3

A4

B1

B2

B3B4

C1

C2

C3

C4

Figure 3: Figure averaging

1.4 Finally!

By now you can probably guess the punchline.

Mean Geometry Theorem. The (weighted) average of two directly similar figures is directly similar to the two
original figures.

Look again at Figure 3. Quadrilaterals A1A2A3A4 and B1B2B3B4 are directly similar, so the Mean Geometry
Theorem guarantees that their average, C1C2C3C4, is directly similar to both of them.
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2 Proofs of MGT

A1

A2

A3

B1

B2B3

C1

C2

C3

Figure 4: MGT for triangles

We mentioned in the introduction that this article incorporates some ideas
from both synthetic and analytic geometry. Here we offer two proofs of the
Theorem – one based in each category – to better illustrate the connection.

Although MGT holds for all types of figures, it suffices to prove result
for triangles (why?):

MGT for Triangles. If 4a = A1A2A3 and 4b = B1B2B3 are di-
rectly similar triangles in the plane, then the weighted average 4c =
(1 − k)A1A2A3 + (k)B1B2B3 = C1C2C3 is similar to both 4a and 4b

(Figure 4).

2.1 Proof 1: Spiral Similarity

If 4b is simply a translation of 4a, say by vector
−→
V, then the transla-

tion by vector k
−→
V sends 4a to 4c, so they are directly similar (in fact

congruent).
Otherwise, there exists a unique spiral similarity1 r

θO that takes 4a

to 4b (see [5, Theorem 4.82]). The three triangles AiOBi (for i = 1, 2, 3)
have ∠AiOBi = θ and OBi/OAi = r, so they are all similar (see Figure 5).

A1

A2

A3

B1

B2B3

C1

C2

C3

O

Figure 5: Similar triangles AiOBi

A1

A2

A3

B1

B2B3

C1

C2

C3

O

Figure 6: Similar triangles AiOCi

Since C1, C2, and C3 are in corresponding positions in these three similar triangles (since AiCi/AiBi = k for
i = 1, 2, 3), the three triangles AiOCi (i = 1, 2, 3) are similar to each other (Figure 6). Thus the spiral similarity
r′

θ′O, where θ′ = ∠A1OC1 and r′ = OC1/OA1, sends 4A1A2A3 to 4C1C2C3, so these triangles are directly similar,
as desired. �QED

2.2 Proof 2: Complex Numbers

We’ll use capital letters for points and lower case for the corresponding complex numbers: point A1 corresponds to
the complex number a1, and so on.

1i.e. a rotation through an angle θ followed by a dilation with ratio r, both centered at the point O
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Since the triangles are similar, ∠A2A1A3 = ∠B2B1B3 and A1A3/A1A2 = B1B3/B1B2. If z is the complex
number with argument ∠A2A1A3 and magnitude A1A3/A1A2, we have a3−a1

a2−a1
= z = b3−b1

b2−b1
. Or, rearranged,

a3 = (1− z)a1 + (z)a2 and b3 = (1− z)b1 + (z)b2. (♣)

To prove the theorem, we need to show that 4C1C2C3 behaves similarly (no pun intended), i.e. we need to show
that c3 = (1− z)c1 + (z)c2. But since ci = (1− k)ai + (k)bi for i = 1, 2, 3 (by definition of 4c), this equality follows
directly from (♣):

c3 = (1− k)a3 + (k)b3

= (1− k)
(
(1− z)a1 + (z)a2

)
+ (k)

(
(1− z)b1 + (z)b2

)
= (1− z)

(
(1− k)a1 + (k)b1

)
+ (z)

(
(1− k)a2 + (k)b2

)
= (1− z)c1 + (z)c2,

as desired. �QED
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3 Some Problems

The theorem has been proved, but there might be some lingering doubts about the usefulness of such a seemingly
simple and specialized statement.2 In this section, we’ll put the Theorem to work, and we’ll learn to recognize when
and how MGT may be applied to a variety of problems.

3.1 Equilaterals Joined at the Hip

Problem 1 (Engel). OAB and OA1B1 are positively oriented regular triangles with a common vertex O. Show
that the midpoints of OB, OA1, and AB1 are vertices of a regular triangle. (Remember: positively oriented means
the vertices are listed in counterclockwise order.)

A

B
A1

B1

O

D

E
F

Figure 7: Problem 1

To show that DEF is equilateral, we’d like to express 4DEF as an average of two other directly similar
equilateral triangles. From the diagram we see that

1
2
A +

1
2
B1 = D,

1
2
B +

1
2
O = E, and

1
2
O +

1
2
A1 = F,

and putting these together yields

1
2
ABO +

1
2
B1OA1 = DEF.

So we’re done by MGT, right?
Let’s make sure everything is in place. Are triangles ABO and B1OA1 directly similar? The problem tells us

that they are both positively oriented equilateral triangles, so yes. Are we indeed taking a weighted average of the
two triangles? In other words, do the weights add to 1? Of course! 1

2 + 1
2 = 1.

Now we can confidently apply the Mean Geometry Theorem and conclude that triangle DEF must be directly
similar to 4ABO and 4B1OA1, i.e. 4DEF is equilateral. �QED

3.2 Napoleon’s Last Hurrah

Problem 2 (Napoleon’s Theorem). If equilateral triangles BCP, CAQ, ABR are erected externally on the sides of
triangle ABC, their centers X, Y, Z form an equilateral triangle (Figure 8).

2Please pardon the unintentional alliteration.
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A

B

C

P

Q

R

X

Y

Z

Figure 8: Napoleon’s Theorem

A

B

C

P

Q

R

X

Y

Z

J

K

L

Figure 9: Equilateral triangle JKL

The setup looks a lot like the configuration in the first problem, where two equilaterals share a common vertex.
We can try to mimic this earlier configuration by considering equilateral triangle 1

2PCB + 1
2BAR = JKL. (Figure

9)
Now the way to reach the target points, X, Y , and Z, presents itself: X is on median JC, and it’s 1

3 of the way
across. This means that X = 2

3J + 1
3C, and likewise for Y and Z. We can write

XY Z =
2
3
JKL +

1
3
CQA,

and since both 4JKL and 4CQA are negatively oriented equilateral triangles, we’re done! �QED

3.3 Extending MGT?

Let’s look closer at that solution. First we averaged PCB and BAR: 1
2PCB + 1

2BAR = JKL. Then, we averaged
this with CQA: 2

3JKL + 1
3CQA = XY Z. Momentarily indulging ourselves in some questionable manipulation, we

can substitute the first equation into the second and simplify to find

1
3
PCB +

1
3
BAR +

1
3
CQA = XY Z. (♠)

This suggests that we may be able to generalize MGT to three figures, like so:

Extended MGT. Define the weighted average of 3 points ω1P1 + ω2P2 + ω3P3 (where the weights ω1, ω2, and
ω3 are real numbers and add to 1) just as we would in the complex plane.3 Then if 4A1A2A3, 4B1B2B3, and
4C1C2C3 are directly similar triangles, their weighted average

ωaA1A2A3 + ωbB1B2B3 + ωcC1C2C3

is also directly similar to them. This naturally extends to include figures other than triangles (as long as they’re all
similar to each other) or more than 3 similar figures (as long as the weights add to 1).

Can you prove this? Anyway, by this generalized version of MGT, equation (♠) alone provides a succinct,
one-line proof of Napoleon’s Theorem. (Cool, huh?)

3.4 But Wait, There’s More!

Problem 3. Napoleon isn’t done with us yet: prove that triangles ABC and XY Z have the same centroid.
3As a notable special case, 1

3
P1 + 1

3
P2 + 1

3
P3 is the centroid of triangle P1P2P3.
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A

B

C

P

Q

R

X

Y

Z
G

Figure 10: More Napoleon

Like Napoleon’s Theorem itself, this can also be done in one line. Here’s the
first half:

1
3
BXC +

1
3
CY A +

1
3
AZB = ??? (♥)

Before you read ahead, try to figure out how and why this proves the problem.
(Jeopardy song plays. . . ) Ok, welcome back!

The three red triangles are isosceles 30−120−30 triangles, so they are all similar.
If G and H denote the centroids of 4ABC and 4XY Z respectively, then the result
of the expression in equation (♥) is triangle GHG, which (by the Theorem) must
also be a 30− 120− 30 triangle. But two of its vertices are at the same place! The
triangle has thus degenerated into a point, so all three of its vertices are at the same
place, and G = H. �QED

3.5 I Can’t Take Any More Equilaterals! and the Asymmet-

ric Propeller

Let’s do one more problem of a similar flavor before we move on.

Problem 4. Positively oriented equilateral triangles XAB, XCD, and XEF share a vertex X. If P , Q, and R

are the midpoints of BC, DE, and FA respectively, prove that PQR is equilateral.

Problem 5 (Crux Mathematicorum). In quadrilateral ABCD, M is the midpoint of AB, and three equilateral
triangles BCE, CDF , and DAG are constructed externally. If N is the midpoint of EF and P is the midpoint of
FG, prove that MNP is equilateral.

Problem 6. The four triangles ABC, AAbAc, BaBBc, and CaCbC are directly similar, and Ma, Mb, and Mc are
the midpoints of BaCa, CbAb, and AcBc. Show that MaMbMc is also similar to ABC.

AB

C

D

E

F

X

P

Q

R

Figure 11: Problem 4

A

B

CD

E

F

G

M

N
P

Figure 12: Problem 5

A

Ab

Ac

Ba

B

Bc

Ca

Cb

C

Ma

Mb

Mc

Figure 13: Problem 6

Hm, didn’t I just say one more problem?
Indeed, all we have to do is solve problem 6; the rest come free. The diagrams are drawn to illustrate illustrate

how the first two problems are special cases of problem 6.4 So, let’s solve problem 6, known as the Asymmetric
Propeller [2].

The problem gives us a plethora of similar triangles to work with, so our first instinct should be to try to write
triangle MaMbMc as an average of these:

MaMbMc = ωABC + ωaAAbAc + ωbBaBBc + ωcCaCbC. (♦)
4In problem 4, the middle triangle has degenerated into point X. In problem 5, one of the outside triangles degenerates into point

F .
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The three triangles AAbAc, BaBBc, and CaCbC play identical roles in the problem, so we have every reason to
guess that ωa = ωb = ωc. Now, for (♦) to work, we need

MA =
1
2
(Ba + Ca) = (ω + ωa)A + ωa(Ba + Ca).

If we set ωa = 1
2 and ω = −ωa = − 1

2 , then this works out perfectly (and likewise for Mb and Mc). So does

MaMbMc = −1
2
ABC +

1
2
AAbAc +

1
2
BaBBc +

1
2
CaCbC

finish the proof?5 The triangles are all similar and the weights add to 1 (= − 1
2 + 1

2 + 1
2 + 1

2 ), so yes. Sweet, another
one liner. �QED

5Remember that negative weights are allowed, as long as the weights add to 1.
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4 Figure Addition

I keep stressing that the weights in a weighted average must add to 1. What would happen if they didn’t?

A

B

M

O

P

Figure 14: Point addition

In the complex-number proof of MGT from section 2.2, there’s really no reason
the weights must be k and (1− k). They could be any real numbers, and the proof
works the same! There is one subtle difference, though. In the diagram to the right,
use weights of ω1 = ω2 = 1, and we’ll try to calculate A + B. Where is it?

To add vectors or complex numbers like this, we need to know where the origin is.
If the origin is at, say, M , the midpoint between A and B, then A + B represents
the sum of the blue vectors

−−→
MA +

−−→
MB =

−→
0 = M . But if we put the origin

at a different point O, then the sum A + B is now the sum of the red vectors
−−→
OA +

−−→
OB =

−−→
OP = P . So, with point addition, the sum depends on the location

of the origin, i.e. we must first specify an origin. With this minor change, MGT
extends yet again:

MGT: Figure Addition. For real numbers ω1 and ω2, define the sum of points ω1P1 + ω2P2 as the endpoint of
the vector ω1

−−−→
OP1 + ω2

−−−→
OP2, where O is a specified origin. Then if 4A1A2A3 and 4B1B2B3 are directly similar,

the sum of figures ωaA1A2A3 + ωbB1B2B3 (formed by adding corresponding vertices) is directly similar to the
original two triangles. As before, this naturally extends to more complicated figures and to more than two figures.

There is another way to visualize figure addition through dilation. For two similar triangles A1B1C1 and
A2B2C2, the sum A1B1C1 + A2B2C2 may be constructed by averaging the two triangles, 1

2A1B1C1 + 1
2A2B2C2,

and then dilating this with center O and ratio 2.

4.1 When Did the IMO Get So Easy? (answer: 1977)

Problem 7 (IMO jury 1977 [6]). OAB and OA′B′ are regular triangles of the same orientation, S is the centroid
of 4OAB, and M and N are the midpoints of A′B and AB′, respectively. Show that 4SMB′ ∼ 4SNA′ (Figure
15).

O

A B

A′

B′

S
M

N
W

X

Y

Z

Figure 15: Problem 7

(In the diagram, points W , X, Y , and Z are midpoints.)
First of all, the red triangles both look like 30 − 60 − 90 triangles,

and if we can prove that, we’re done. The two equilateral triangles give
us plenty of 30 − 60 − 90s to work with; all we have to do is find the
right ones!

Points O, Z, N , and W form a parallelogram, so if O is the
origin, Z + W = N . With a little experimentation, we arrive at
NSA′ = ZOA′ + WSO, and since both 4ZOA′ and 4WSO are
positively oriented 30 − 60 − 90 triangles, so is 4NSA′. Similarly,
MSB′ = Y OB′+XSO (again with O as origin) proves that 4MSB′ is
a negatively oriented 30− 60− 90 triangle. Whew, that was quick! �QED

4.2 A Fresh Look at an Old Result (1936, to be

precise)

Problem 8 (Pompeiu’s Theorem [1]). Given an equilateral triangle ABC and a point P that does not lie on the
circumcircle of ABC, one can construct a triangle of side lengths equal to PA, PB, and PC. If P lies on the
circumcircle, then one of these three lengths is equal to the sum of the other two.

Erect equilateral triangles PCY and BPX with the same orientation as 4ABC. With P as origin, consider
equilateral triangle PCY + BPX = BCA′. It must be equilateral with the same orientation as ABC, which
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A

B C

P

X

Y

Figure 16: Pompeiu’s Theorem

means A′ = Y + X = A, i.e. PY AX is a parallelogram. Notice that 4APY has AP = AP , PY = CP , and
Y A = PX = BP , so if it is not degenerate, 4APY is the triangle we’re looking for.

When is this triangle degenerate, i.e. when are A, P and Y collinear? This happens if and only if (using directed
angles modulo 180◦) ∠CPA = ∠CPY = 60◦ = ∠CBA, i.e. quadrilateral ABCP is cyclic. And certainly, if 4APY

is degenerate, then one of its sides equals the sum of the other two. �QED
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5 A Few Harder Problems

At this point we’ve become proficient in utilizing the various forms of the Theorem, and we’ve learned to look for a
MGT approach when the problem hands us loads of similar triangles with which to play. But MGT can be useful
in many other situations as well, even if its application may be far from obvious. In this section, we’ll look at a
few harder problems to stress that the MGT may not solve every problem immediately, but it’s a valuable method
to keep in mind as you explore a problem. It may be that MGT is only one of many steps in your solution. Or,
ideas related to MGT may lead you to a solution that doesn’t use it at all. The point is that looking at a diagram
from an MGT viewpoint may tell you things that you formerly wouldn’t have noticed.

This brings up another point: in order to recognize uses for MGT, you must have an accurate diagram – or
two, or three – to look at. This article is filled with diagrams for exactly that purpose. (Whether you’re solving a
geometry problem using MGT or not, it’s usually a good idea to have a decent diagram handy!)

On that note, let’s bring on the problems.

5.1 A Pretty(,) Busy Diagram

Problem 9 (IMO Shortlist 2000, G6). Let ABCD be a convex quadrilateral with AB not parallel to CD, and let
X be a point inside ABCD such that ∠ADX = ∠BCX < 90◦ and ∠DAX = ∠CBX < 90◦. If Y is the point of
intersection of the perpendicular bisectors of AB and CD, prove that ∠AY B = 2∠ADX.

A

B

C

D

X

Y

Figure 17: Problem 9

First thing to notice: by simply relabeling the diagram, it must also be true that ∠DY C = 2∠DAX. So,
designate ∠ADX = α and ∠DAX = δ. Next, notice that triangles AXD and BXC are similar. Ooh, that means
we should form another similar triangle 1

2AXD+ 1
2BXC! That’s a decent thought, but unfortunately, even though

AXD and BXC are similar, they’re not directly similar.
It may not clear where to go from here, but since it’s necessary to start somewhere, we’ll begin with the only

tangible fact we have: similar triangles AXD and BXC. It’s interesting that no matter how these two triangles are
hinged or scaled around X, point Y still has its curious property. This suggests a possible direction for exploration:
scale the triangles and see what happens to point Y .

Let’s leave triangle AXD fixed while we enlarge and shrink BXC. What size triangle would be easier to analyze?
How about zero! Consider quadrilateral AB′C ′D, where4B′XC ′ has shrunken to the degenerate triangle at point X

(Figure 18). The corresponding Y ′ is the intersection of the perpendicular bisectors of AB′ = AX and DC ′ = DX,
i.e. the circumcenter O of triangle AXD. Is it true that 2∠ADX = ∠AOX? Yes, since arc ÂX of circle O has
measure 2α. So when triangle BXC shrinks to zero, everything works out as expected.

What other size for triangle BXC might work well? Let’s look at quadrilateral AB′′C ′′D, where B′′XC ′′ is
congruent to AXD as shown in Figure 19. To locate Y ′′, we should be looking for the perpendicular bisectors
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A

B

C

D

X = B′ = C ′

O
Y

Figure 18: Studying “quadrilateral” AB′C ′D

of AB′′ and C ′′D. But these are the same line
←−→
MN , so where is Y ′′? We can instead locate Y ′′ by finding the

point on this line so that ∠AY ′′B′′ = 2α, since this is another property our Y s should have. This means that
∠AY ′′X = α = ∠ADX, so AXY ′′D is cyclic, i.e. Y ′′ is the second intersection of circle O with line MN . (If the
circle happens to be tangent to line MN , ‘second intersection’ simply means tangency point.)

A

B

C

D

B′′

C ′′

X

M

N

O

Y ′′
Y

Figure 19: Quadrilateral AB′′C ′′D

It seems that we’ve lost sight of our original problem. We’ve studied quadrilaterals AXXD and AB′′C ′′D,
but not the original ABCD. Luckily, a perusal of diagram 19 reveals the next step: triangles AOX, AY ′′B′′, and
AY B are similar since they’re all isosceles with vertex angle 2α, so we should be able to average them. Indeed, if
XB/XB′′ = k, then we should have (1−k)AOX +(k)AY ′′B′′ = AY B. This is (almost) the last step to a complete
solution! A full, self-contained solution is given below.

Full Solution. Let XB/XA = k, and dilate B and C around X with ratio 1/k to points B′′ and C ′′ respectively,
so that AB′′C ′′D is an isosceles trapezoid. M and N are the midpoints of AB′′ and C ′′D. Define O as the
circumcenter of triangle AXD, and let Y ′′ be the second intersection of circle ADX with line MN . If ∠ADX = α

and ∠DAX = δ, it follows that ∠AOX = 2α, ∠AY ′′X = α which implies ∠AY ′′B′′ = 2α, and likewise, ∠DOX = 2δ

and ∠DY ′′C ′′ = 2δ. Therefore, the isosceles triangles AOX and AY ′′B′′ are similar, as are triangles DOX and
DY ′′C ′′.

Define Y1 = (1 − k)O + (k)Y ′′, and notice that triangles AY1B = (1 − k)AOX + (k)AY ′′B′′ and DY1C =

14



(1− k)DOX + (k)DY ′′C ′′ are isosceles by MGT. Thus, Y1 is the intersection of the perpendicular bisectors of AB

and CD, i.e. Y1 = Y . Furthermore, by our application of MGT, ∠AY B = ∠AOX = 2α, QED. �QED

5.2 Hidden Circles

Problem 10 (USA TST 2005 #6). Let ABC be an acute scalene triangle with O as its circumcenter. Point P lies
inside triangle ABC with ∠PAB = ∠PBC and ∠PAC = ∠PCB. Point Q lies on line BC with QA = QP . Prove
that ∠AQP = 2∠OQB.

A

B
C

Q

O

M

P

X

Figure 20: Problem 10

Most of the diagram is straightforward: O is the circumcenter, Q is the intersection of BC with the perpendicular
bisector of AP , and I’ve added M , the intersection of AP with BC. Everything is simple to navigate except P

itself, so that’s where we’ll start investigating.
The first strange angle equality, i.e. ∠PAB = ∠PBC, shows that 4MAB ∼ 4MBP . Thus, MA/MB =

MB/MP , or (MA)(MP ) = (MB)2. This shows, by power of a point, that the circle through A, P , and B is
tangent to line MB at B.6 Likewise, the circle through A, P , and C is tangent to MC at C. (Call these two circles
[and their centers] O1 and O2 respectively.) Finally, (MB)2 = (MA)(MP ) = (MC)2, so M is the midpoint of BC.

A

B
C

Q

O
O1

O2

M

P

X

Figure 21: Circles O1 and O2

The diagram becomes much clearer from the viewpoint of the two circles. The circles intersect at A and P , and
line BC is their common tangent. Point Q, being the intersection of their axis of symmetry (line O1O2) with a
common tangent (line BC), must be the center of homothecy between circles O1 and O2.

Let X be the midpoint of AP . We’re asked to prove that ∠AQP = 2∠OQB, or equivalently, ∠AQX = ∠OQM .
But triangles AQX and OQM are both right triangles, so we need to prove that they are similar. Here’s where

6If this circle intersected line MB at some other point B′, then power of a point would show that (MB)2 = (MA)(MP ) =
(MB)(MB′), so MB = MB′ and B = B′.
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Mean Geometry might come in handy: to prove that these triangles are similar, we might be able to find a third
triangle similar to, say 4AQX, and then express triangle OQM as a weighted average of those two. So now we
hunt for a third similar triangle. In order for this to work, this triangle should have one vertex at Q, one vertex
along line XM , and one vertex along line AO. What key points are on these two lines? Just A and P . And since
A is already being used, let’s think about P . If triangles AQX and OQM were similar to triangle ZQP , where
would this mystery point Z have to be? We already want it on line AO, and since ∠AQX = ∠XQP = ∠ZQP , we
would also need Z to be on line QX. So define Z = AO ∩QX, and let’s see if 4ZQP is indeed the triangle we’re
looking for. First of all, is it a right triangle?

Angle QPZ is a right angle if and only if ∠QAZ is right, so we need QA ⊥ OA, i.e. QA should be tangent
to circle O at A. It turns out to be true, as follows. Let T be the second intersection of QA with circle O1. If
rQ (where r = QO2/QO1) is the homothecy taking circle O1 to circle O2, we have rQ(T ) = A and rQ(B) = C,
so ∠ACB = ∠TBQ = ∠TAB. Thus, triangles QBA and QAC are similar, so (QB)(QC) = (QA)2, and QA is
tangent to circle O. So (by tracing backwards through a few lines of reasoning above), triangle ZQP actually does
have a right angle at P . This means it is similar to triangle AQX.

A

B
C

Q

O
O1

O2

M

Z

T

P

X

Figure 22: Three similar triangles

The next part of our initial plan was to find a weighted average of triangles ZQP and AQX that would produce
triangle OQM , thus completing the proof. So, all we need to show is that AO/ZO = XM/PM . Good luck.

Those segment lengths aren’t easy to calculate, even with plenty of paper and tons of time. For the first time
in this article, MGT fails to miraculously save the day. But we’ve come far enough with the MGT idea so that the
proof is moments away. Let r

θQ be the spiral dilation centered at Q that sends XP to AZ. Since M is on line XP ,
r
θQ(M) = M ′ is on line ZA. Also, since triangle M ′QM is similar to triangle AQX, we have ∠QMM ′ = 90◦, so M ′

is also on the perpendicular bisector of BC. This means r
θQ(M) = M ′ = O. Thus, ∠OQM = ∠AQX, as desired.

(Notice that, even though MGT was a driving force for most of the solution, not a single mention of it is necessary
in the final writeup.) �QED

5.3 Nagel Who?

Problem 11 (USAMO 2001 #2). Let ABC be a triangle and let ω be its incircle. Denote by D1 and E1 the
points where ω is tangent to sides BC and AC, respectively. Denote by D2 and E2 the points on sides BC and
AC, respectively, such that CD2 = BD1 and CE2 = AE1, and denote by P the point of intersection of segments
AD2 and BE2. Circle ω intersects segment AD2 at two points, the closer of which to the vertex A is denoted by Q.
Prove that AQ = D2P .

In the diagram I’ve added F1 and F2 to preserve symmetry, and I included the midpoints of the sides of the
triangle.
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Figure 23: Problem 11
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F1

D2

I

Ia

Q

Figure 24: Excircle Ia

Using the standard notations a = BC, b = CA, c = AB, and s = 1
2 (a + b + c), it is relatively well known that

BD1 = s− b. Indeed, if AE1 = AF1 = x, BF1 = BD1 = y, CD1 = CE1 = z, then the system y + z = a, z + x = b,
x + y = c can be solved to give BD1 = y = (c + a− b)/2 = s− b. Likewise, if the excircle opposite A is tangent to
BC at V , a similar calculation shows that CV = s− b = BD1, i.e. V = D2. So D2, E2, F2 are the tangency points
of BC, CA, AB with the triangle’s three excircles.

Another relatively well-known point in the diagram is P , commonly referred to as the Nagel point of triangle
ABC. It’s simply the intersection of the three cevians AD2, BE2, and CF2, which must concur by Ceva’s theorem:

BD2

D2C
· CE2

E2A
· AF2

F2B
=

s− c

s− b
· s− a

s− c
· s− b

s− a
= 1.

A useful property of the Nagel point,7 other than its mere existence, is how its defining cevians interact with the
incircle: line AD2 intersects the incircle at point Q diametrically opposite from D1. To prove this, let r = AI/AIa (in
Figure 24), so that rA is the homothecy centered at A taking excircle IA to incircle I. Since D2IA is perpendicular
to BC, its image through rA, namely QI, is also perpendicular to BC. Therefore, QD1 is a diameter of circle I.
The same goes for diameters E1R and F1S.

Now to the problem. The midpoints D, E, and F inspire us to consider

1
2
4D1E1F1 +

1
2
4D2E2F2 = 4DEF. (F)

Triangles D1E1F1 and D2E2F2 aren’t similar, so MGT doesn’t tell us anything directly. But it’s still worth noticing.
If it’s true that AQ = D2P , it must also happen that BR = E2P and CS = F2P . This means that, with P as

origin, we’d like to be able to show that
ABC + D2E2F2 = QRS.

Again, these triangles are not similar, so MGT isn’t applicable. But this equation has striking similarities with
(F). These similarities become more pronounced if we rewrite equation (F) as

−2DEF + D2E2F2 = −D1E1F1 (F′)

7The Nagel point is also (and less commonly) known as the bisected perimeter point [8] or the splitting center [7], since the cevians
AD2, etc., bisect the perimeter of the triangle, i.e. AB + BD2 = AC + CD2 = s.
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Figure 25: Problem 11

Triangle −2DEF is simply a translation of ABC, and triangle −D1E1F1 is a translation of QRS. The two equations
are almost identical! This inspires the following observation:

Non-similar Figure Addition. If three triangles (figures) satisfy ω141 + ω242 = 43, and if 4′
1 is a translated

version of 41, then ω14′
1 + ω242 is a translation of 43, regardless of the location of the origin.

Indeed, if 4′
1 = 41 +

−→
V,8 then

ω14′
1 + ω242 = ω141 + ω242 + ω1

−→
V = 43 + ω1

−→
V.

Now we can finish the problem. Beginning with equation (F′), translate −2DEF to coincide with ABC. The
above observation (with our origin still at P ) proves that Q′R′S′ = ABC +D2E2F2 must be a translation of QRS.
But since A+D2 = Q′ lies on AD2, and likewise for R′ and S′, triangles QRS and Q′R′S′ are also homothetic with
center P . So the two triangles must be identical, and in particular, Q = Q′ = A + D2. So

−−→
AQ =

−−−→
PD2, proving the

desired result. �QED

8i.e. a translation by vector
−→
V
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6 Additional Problems

Problem 12. Recall problem 4: “Positively oriented equilateral triangles XAB, XCD, and XEF share a vertex
X. If P , Q, and R are the midpoints of BC, DE, and FA respectively, prove that PQR is equilateral.” Prove this
problem using Napoleon’s Theorem.

Problem 13 (Crux Mathematicorum). A line parallel to the side AC of equilateral 4ABC intersects BC at M

and AB at P , thus making BMP equilateral as well. D is the center of BMP and E is the midpoint of CP .
Determine the angles of ADE.

Problem 14. The following theorem appears in Geometry Revisited [5] as a special case of a theorem of Petersen
and Schoute: If ABC and A′B′C ′ are two directly similar triangles, while AA′A′′, BB′B′′, CC ′C ′′ are three directly
similar triangles, then 4A′′B′′C ′′ is directly similar to 4ABC.

a. Show that this theorem generalizes the triangle version of MGT.

b. What minor adjustment can be made to the statement of MGT to account for this generalization (and it’s
proof)?

c. Show that Napoleon’s theorem is a special case of this theorem.

Problem 15 (Van Aubel’s Theorem). Given an arbitrary planar quadrilateral, place a square outwardly on each
side, and connect the centers of opposite squares. Then these two lines perpendicular and of equal length.

Problem 16. Equilateral triangles AEB, BFC, CGD, DHA are erected outwardly on the sides of a plane
quadrilateral ABCD.

a. Let M , N , O, and P be the midpoints of segments EG, HF , AC, and BD respectively. What is the shape
of PMON?

b. Md and Ma are the centroids of 4DAH and 4AEB, and equilateral triangle MdTMa is oppositely oriented
with respect to ABCD. Find the angles of triangle FTG.

c. Ma and Mc are the centroids of 4AEB and 4CGD. Prove that segments MaMc and FH are perpendicular,
and, in addition, |FH| =

√
3 |MaMc|.

d. Equilateral triangles EWF , FXG, GY H, and HZE are oppositely oriented with respect to ABCD. Prove
that quadrilaterals ABCD and WXY Z have the same area.

Problem 17. Let `(P,QR) denote the line through point P perpendicular to line QR. Say that 4XY Z perpen-
dicularizes 4ABC if `(X, BC), `(Y, CA), and `(Z,AB) concur at a point. If 4XY Z perpendicularizes 4ABC

and 4DEF , prove that 4XY Z also perpendicularizes any linear combination of 4ABC and 4DEF .

Problem 18 (Alex Zhai).

a. In triangle ABC, AD, BE, and CF are altitudes. Dc and Db are the projections of D onto AB and AC,
respectively, and points Ea, Ec, Fa, and Fb are defined similarly. Prove that quadrilaterals BDcDbC, CEaEcA,
and AFbFaB are cyclic.

b. Let OA be the center of circle BDcDbC, and let Ta be the midpoint of altitude AD. Similarly define Ob,
Oc, Tb, and Tc. If O is the circumcenter of triangle ABC, show that AOOaTa is a parallelogram, as well as
BOObTb and COOcTc.

c. Prove that lines OaTa, ObTb, and OcTc are concurrent.
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Problem 19. Let P be a convex polygon in the plane. A real number is assigned to each point in the plane so
that the sum of the number assigned to the vertices of any polygon similar to P is equal to 0. Prove that all the
assigned numbers are equal to 0.

Problem 20. Show that I, G, and N (the incenter, centroid, and Nagel point of a triangle) are collinear in that
order with 2 · IG = GN . Hint: see problem 11.

Problem 21. Given a convex quadrilateral ABCD, construct (with ruler and compass) a square of the same
orientation with one vertex on each side of ABCD.
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7 Solutions to Additional Problems

Problem 12. Recall problem 4: “Positively oriented equilateral triangles XAB, XCD, and XEF share a vertex
X. If P , Q, and R are the midpoints of BC, DE, and FA respectively, prove that PQR is equilateral.” Prove this
problem using Napoleon’s Theorem.

Solution. In diagram 26, triangles BCJ , DEK, FAL are equilateral, and G, H, I, M , N , O are the centers of their
respective triangles. By napoleon’s theorem thrice, 4HGM , 4IHN , and 4GIO are equilateral, and their centers
T , U , V are also the centroids of 4XBC, 4XDE, and 4XFA respectively (by problem 3). Again by napoleon’s
theorem (on the blue triangles), 4TUV is equilateral, and the dilation 3/2X carries 4TUV to 4PQR.
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Figure 26: Problem 12
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Figure 27: Problem 13

A

B

A′ = C

B′

C ′ A′′

B′′

C ′′

Figure 28: Problem 14.c

�QED

Problem 13 (Crux Mathematicorum). A line parallel to the side AC of equilateral 4ABC intersects BC at M

and AB at P , thus making BMP equilateral as well. D is the center of BMP and E is the midpoint of CP .
Determine the angles of ADE.

Solution. S and T are the midpoints of CB and CA, and X is the center of 4ABC. Let BP/BA = k. Because
E must lie on line ST , and since 4CST ∼ 4CBA, SE/ST = BP/BA = k. Also, since 4BPD ∼ 4BAX,
BD/BX = BP/BA = k. Thus, (1− k)ABS + (k)AXT = ADE, so 4ADE is a 30− 60− 90 triangle. �QED

Problem 14. The following theorem appears in Geometry Revisited [5] as a special case of a theorem of Petersen
and Schoute: If ABC and A′B′C ′ are two directly similar triangles, while AA′A′′, BB′B′′, CC ′C ′′ are three directly
similar triangles, then 4A′′B′′C ′′ is directly similar to 4ABC.

a. Show that this theorem generalizes the triangle version of MGT.

b. What minor adjustment can be made to the statement of MGT to account for this generalization (and it’s
proof)?

c. Show that Napoleon’s theorem is a special case of this theorem.

Solution. a. In the special case where A′′ is on line AA′, the similarity of degenerate triangles AA′A′′, BB′B′′,
and CC ′C ′′ simply means that AA′′/AA′ = BB′′/BB′ = CC ′′/CC ′ = k. Now, the fact that A′′B′′C ′′ is similar to
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Figure 29: Van Aubel’s Theorem

ABC is exactly the statement of MGT, since

(1− k)ABC + (k)A′B′C ′ = A′′B′′C ′′.

b. In the complex number proof of MGT (section 2.2), we required the two weights k and 1− k to be real numbers
that add to 1. If we allow the weights to be complex, we obtain this generalization. The proof in section 2.2 remains
unchanged.

c. The napoleon diagram has been relabeled in figure 28 to show the correspondence. �QED

Problem 15 (Van Aubel’s Theorem). Given an arbitrary planar quadrilateral, place a square outwardly on each
side, and connect the centers of opposite squares. Then these two lines perpendicular and of equal length.

Solution. Q, R, S, and T are the midpoints of the sides of quadrilateral MNOP . Since 1
4 (A + F + G + C) =

1
2 (M + N) = Q, and likewise around, averaging the four given squares proves that QRST is itself a square:

1
4
FBAE +

1
4
GHCB +

1
4
CIJD +

1
4
ADKL = QRST.

Since
−−→
MO = 2

−→
TS and

−−→
PN = 2

−−→
TQ, and since TS and TQ are equal in length and perpendicular, diagonals MO

and NP must share this property, as desired.
�QED

Problem 16. Equilateral triangles AEB, BFC, CGD, DHA are erected outwardly on the sides of a plane
quadrilateral ABCD.

a. Let M , N , O, and P be the midpoints of segments EG, HF , AC, and BD respectively. What is the shape
of PMON?

b. Md and Ma are the centroids of 4DAH and 4AEB, and equilateral triangle MdTMa is oppositely oriented
with respect to ABCD. Find the angles of triangle FTG.

c. Ma and Mc are the centroids of 4AEB and 4CGD. Prove that segments MaMc and FH are perpendicular,
and, in addition, |FH| =

√
3 |MaMc|.

d. Equilateral triangles EWF , FXG, GY H, and HZE are oppositely oriented with respect to ABCD. Prove
that quadrilaterals ABCD and WXY Z have the same area.
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Figure 31: Problem 16.b
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Figure 32: Problem 16.c
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Figure 33: Problem 16.d

Solution. a. Since 1
2ABE + 1

2CDG = OPM and 1
2BCF + 1

2DAH = PON , triangles 4OPM and 4PON are
equilateral, so quadrilateral MONP is a rhombus with vertex angles of 60◦ and 120◦.

b. By Napoleon’s theorem on triangle DAB, T must be the center of the equilateral triangle erected on side
DB, i.e. 4DTB is a 30 − 120 − 30 triangle. Now apply problem 9 to quadrilateral DBFG. Point C has
∠GDC = ∠FBC = 60◦ and ∠DGC = ∠BFC = 60◦, so problem 9 guarantees the existence of a point Y on
the perpendicular bisectors of DB and FG so that ∠DY B = ∠GY F = 120◦. T is on the perpendicular bisector of
DB and has ∠DTB = 120◦, so T is Y , and thus 4GTF is a 30− 120− 30 triangle.

c. This solution mimics the proof of Van Aubel’s Theorem (problem 15). Erect rectangles JBAI, KLCB, CMND,
and ADOB with

√
3 : 1 side ratios as shown. The average of these four rectangles (with vertices in the listed order)

is rectangle WXY Z (not shown) which connects the midpoints of the sides of quadrilateral MaFMcH and which
must be similar to the red rectangles. And as explained in problem 15, since the Varignon Parallelogram [5,
Theorem 3.11] of quadrilateral MaFMcH has sides that are perpendicular with a ratio of

√
3/1, the diagonals FH

and MaMc must have this property too.

d. Recall from problem 8 that, with C as center, 4DGC + 4BCF = 4XGF , proving that D + B = X and
so XDCB is a parallelogram. Likewise, ADCY is a parallelogram. Segments XB and AY are both parallel and
congruent to DC, so XAY B is a parallelogram, and AB and XY share the same midpoint P . The same goes
for Q, R, and S. Thus, quadrilaterals ABCD and WXY Z have the same Varignon Parallelogram PQRS, so
area(ABCD) = 2 · area(PQRS) = area(WXY Z). �QED

Problem 17. Let `(P,QR) denote the line through point P perpendicular to line QR. Say that 4XY Z perpen-
dicularizes 4ABC if `(X, BC), `(Y, CA), and `(Z,AB) concur at a point. If 4XY Z perpendicularizes 4ABC

and 4DEF , prove that 4XY Z also perpendicularizes any linear combination of 4ABC and 4DEF .
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Solution. The following lemma is key: 4XY Z perpendicularizes 4ABC if and only if 4ABC perpendicularizes
4XY Z. To finish problem 17 with this property, note that if XY Z perpendicularizes ABC and DEF , then both
ABC and DEF perpendicularize XY Z, say at points P and Q respectively. Define GHI = ω1ABC + ω2DEF

and R = ω1P + ω2Q. Segment GR – as a linear combination of AP and DQ – is perpendicular to Y Z, and
likewise for HR and IR. So GHI perpendicularizes XY Z at R, and the above lemma guarantees that XY Z must
perpendicularize GHI.

We offer two very different proofs of the lemma.

Proof 1. We’ll make use of the following property: lines PQ and RS are perpendicular if and only if PR2 + QS2 =
PS2 + QR2. Indeed, using · as the vector dot product,

(
−→
P −

−→
R) · (

−→
P −

−→
R) + (

−→
Q −

−→
S ) · (

−→
Q −

−→
S ) = (

−→
P −

−→
S ) · (

−→
P −

−→
S ) + (

−→
Q −

−→
R) · (

−→
Q −

−→
R)

is equivalent to (
−→
P −

−→
Q) · (

−→
R −

−→
S ) = 0 after expanding and simplifying.

For two triangles ABC and XY Z in the plane, let `(Y, AC) and `(Z,AB) meet at Q. 4XY Z perpendicularizes
4ABC if and only if XQ ⊥ BC, i.e. if and only if

0 = (CQ2 −QB2) + (BX2 −XC2)

= (CQ2 −QA2) + (BX2 −XC2) + (AQ2 −QB2)

= (CY 2 − Y A2) + (BX2 −XC2) + (AZ2 − ZB2).

But this last expression makes no distinction between triangles ABC and XY Z, so if one triangle perpendicularizes
another, the other must perpendicularize the first. �QED

A′

B′ C ′

Q

X

Y

Z

L

M

N

Figure 34: Proof 2 of perpendicularization lemma

Proof 2. Assume 4XY Z perpendicularizes 4ABC at point Q. Draw three lines: line `a through X parallel to
BC, line `b through Y parallel to CA, and line `c through Z parallel to AB. These lines determine triangle A′B′C ′

homothetic to 4ABC, and so ABC perpendicularizes XY Z if and only if A′B′C ′ does.
Let L, M , N be the projections of A′, B′, C ′ onto Y Z, ZX, XY respectively. Quadrilateral A′ZQY is cyclic,

so we may calculate
∠C ′A′L = 90◦ − ∠ZY A′ = 90◦ − ∠ZQA′ = ∠QA′B′,

and likewise for B′M and C ′N . Thus,

sin∠C ′A′L

sin∠LA′B′ ·
sin∠A′B′M

sin∠MB′C ′ ·
sin∠B′C ′N

sin∠NC ′A′ =
sin∠QA′B′

sin∠C ′A′Q
· sin∠QB′C ′

sin∠A′B′Q
· sin∠QC ′A′

sin∠B′C ′Q
= 1

i.e. A′L, B′M , and C ′N do in fact concur by the trigonometric form of Ceva’s theorem. (They concur at the
isogonal conjugate of Q with respect to triangle A′B′C ′.) �QED
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Problem 18 (Alex Zhai).

a. In triangle ABC, AD, BE, and CF are altitudes. Dc and Db are the projections of D onto AB and AC,
respectively, and points Ea, Ec, Fa, and Fb are defined similarly. Prove that quadrilaterals BDcDbC, CEaEcA,
and AFbFaB are cyclic.

b. Let OA be the center of circle BDcDbC, and let Ta be the midpoint of altitude AD. Similarly define Ob,
Oc, Tb, and Tc. If O is the circumcenter of triangle ABC, show that AOOaTa is a parallelogram, as well as
BOObTb and COOcTc.

c. Prove that lines OaTa, ObTb, and OcTc are concurrent.

Solution. a. By similar triangles ADcD and ADB, ADc/AD = AD/AB, i.e. (ADc)(AB) = (AD)2. Likewise,
(ADb)(AC) = (AD)2 = (ADc)(AB), so BDcDbC is cyclic by the converse of power-of-a-point. Similar arguments
work for the other two quadrilaterals.
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B CD

F

Mc

Oa

H

O

Ta

T ′
a

Dc

O′
a

Figure 35: Problem 18.b
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Figure 36: Problem 18.c

b. ATa and OOa are parallel because they are both perpendicular to BC, so it is only necessary to show they have the
same length. Project Ta, Oa, and O onto AB at points T ′

a, O′
a, and Mc, which must be the midpoints of ADc, AB,

and DcB respectively. We have T ′
aA = DcA/2 and O′

aMc = BMc −BO′
a = (BDc + DcA)/2− (BDc)/2 = DcA/2.

Since the projections of TaA and OaO onto AB are equal in length, and since BA and AD are not perpendicular,
TaA = OaO, as desired.

c. It can be calculated that ∠OAC + ∠AEF = (90 − ∠CBA) + (∠CBA) = 90, so AO ⊥ EF , i.e. OaTa ⊥ EF .
Thus, we wish to prove that OaObOc perpendicularizes DEF (see problem 17).

Let the midpoints of BC, CA, AB be Ma, Mb, Mc, and let H be the orthocenter of ABC. Since MaMbMc is
similar to ABC with half its size, and since O is the orthocenter of MaMbMc, OMa = 1

2AH. Since we have already
proved that OOa = 1

2AD, it follows that MaOa = 1
2HD. So with H as origin, OaObOc = MaMbMc + 1

2DEF ,
i.e. DEF = 2OaObOc − 2MaMbMc. And since OaObOc perpendicularizes MaMbMc (at O) and OaObOc (at its
own orthocenter), triangle OaObOc must perpendicularize the linear combination 2OaObOc − 2MaMbMc = DEF

by problem 17, as desired. �QED

Problem 19. Let P be a convex polygon in the plane. A real number is assigned to each point in the plane so
that the sum of the number assigned to the vertices of any polygon similar to P is equal to 0. Prove that all the
assigned numbers are equal to 0.
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Solution. Let f(T ) be the number associated with point T in the plane.
The idea is to use an extended version of problem 14 (illustrated for n = 4 in diagram 37), and then to let one

of the polygons shrink to a single point X (figure 38).
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A1,2

A2,2

A3,2

A4,2

A1,3

A2,3

A3,3

A4,3

A1,4

A2,4

A3,4

A4,4

Figure 37: Generalization of problem 14
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A3,3

A1,4

A2,4

A3,4

X

Figure 38: Problem 19

An arbitrary point X is chosen, polygon R1 = A1,1A1,2 · · ·A1,n similar to P is drawn with no vertices at X,
and then polygons Bi = A1,iA2,i · · ·An−1,iX (1 ≤ i ≤ n) are drawn all similar to P. It follows that each polygon
Ri = Ai,1Ai,2 · · ·Ai,n (1 ≤ i ≤ n − 1) is also similar to P (see problem 14). Thus, since

∑
b∈Bi

f(b) = 0 and∑
r∈Rj

f(r) = 0 for any 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1, we can add over polygons Bi and over polygons Ri to cancel
out most of the terms:

0 =
n∑

i=1

∑
b∈Bi

f(b) = n · f(X) +
n∑

i=1

n−1∑
j=1

f(Aj,i) = n · f(X) +
n−1∑
j=1

∑
r∈Rj

f(r) = n · f(X) + 0.

This means f(X) = 0, and since point X was arbitrary, this holds for all points in the plane. �QED

Problem 20. Show that I, G, and N (the incenter, centroid, and Nagel point of a triangle) are collinear in that
order with 2 · IG = GN . Hint: see problem 11.

Solution. Refer to figure 25 in problem 11. With origin P , define D′E′F ′ = −2DEF and D′
1E

′
1F

′
1 = −D1E1F1.

These are the triangles used – but never drawn – in equation (F′) on page 17, and they are translations of ABC

and QRS respectively. Also set X = 2D. Since
−−→
AQ =

−−−→
PD2 =

−−−→
D1X =

−−−→
D′Q′, it follows that triangles D′E′F ′

and Q′R′S′ are in the same relative position as ABC and QRS, i.e.
−−→
AD′ =

−−−→
QD′

1. And since
−−→
AD′ = 3

−−→
GP (since

ADD′ ∼ GDP ) and
−−−→
QD′

1 = 2
−→
IP (since QD1D

′
1 ∼ ID1P ), the conclusion follows. �QED

Problem 21. Given a convex quadrilateral ABCD, construct (with ruler and compass) a square of the same
orientation with one vertex on each side of ABCD.

Solution. First, we prove that it is impossible for AB ⊥ CD and AD ⊥ BC to occur simultaneously. Assume this
does happen, label AB ∩ CD = X and AD ∩ BC = Y , and assume (without loss of generality) that C is between
X and D and between Y and B. Then

360◦ > ∠B + ∠C + ∠D = 540◦ − ∠C > 360◦,

contradiction. So it is safe to assume BC is not perpendicular to DA.
Given a point Pi ∈ AB, construct square �i = PiQiRiSi as follows: rotate line DA clockwise by 90◦ around Pi

to intersect BC at Qi (this intersection exists uniquely since BC 6⊥ DA), and complete positively oriented square
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A
B

C

D

P

Q

R

S

P0

Q0

R0

S0

P1

Q1

R1

S1

Figure 40: Problem 21

PiQiRiSi. This square with vertex Pi has the properties that Qi ∈ BC and Si ∈ DA (by rotation), and furthermore,
the construction proves that such a square is unique. Now it is only necessary to find the right P ∈ AB so that the
corresponding R lies on CD.

Choose two distinct points P0, P1 ∈ AB and draw squares �0 and �1 as above. Choose any other point
Pt = (1 − t)P0 + (t)P1 on AB, and consider �′

t = PtQ
′
tR

′
tS

′
t = (1 − t)�0 + (t)�1. Since Q′

t ∈ Q0Q1 ≡ BC and
S′t ∈ S0S1 ≡ DA, square �′

t satisfies the defining conditions for �t, i.e. �t = �′
t. In particular, Rt = R′

t =
(1 − t)R0 + (t)R1, meaning Rt must lie on line R0R1. And since Rt covers all of this line as t varies, the locus of
such points is exactly this line, i.e. R = CD ∩ R0R1. The rest of the square can no be constructed now that the
correct ratio t = R0R/R0R1 is known.

There are a few exceptional cases to consider. If line R0R1 and line CD are identical, any point Pt ∈ AB will
produce a viable square �t. If the two lines are parallel but not equal, there is no square with the desired properties.
And finally, if R0 = R1, then Rt = R0 for all t, so all Pt work or no Pt work depending on whether or not R0 is on
line CD. �QED
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