Mean Geometry

Zachary R. Abel

July 9, 2007

Contents

1 Introduction 3
1.1 Basic Definitions 3
1.2 Point Averages 3
1.3 Figure Averages 3
1.4 Finally! 4
2 Proofs of MGT 5
2.1 Proof 1: Spiral Similarity 5
2.2 Proof 2: Complex Numbers 5
3 Some Problems 7
3.1 Equilaterals Joined at the Hip 7
3.2 Napoleon's Last Hurrah 7
3.3 Extending MGT? 8
3.4 But Wait, There's More! 8
3.5 The Asymmetric Propeller 9
4 Figure Addition 11
4.1 When Did the IMO Get So Easy? 11
4.2 A Fresh Look at an Old Result 11
5 A Few Harder Problems 13
5.1 A Pretty(,) Busy Diagram 13
5.2 Hidden Circles 15
5.3 Nagel Who? 16
6 Additional Problems 19
7 Solutions to Additional Problems 21

List of Figures

1 Direct and inverse similarity 3
2 Point averaging 3
3 Figure averaging 4
4 MGT for triangles 5
5 Similar triangles $A_{i} O B_{i}$ 5
6 Similar triangles $A_{i} O C_{i}$ 5
7 Problem 1 7
8 Napoleon's Theorem 8
9 Equilateral triangle $J K L$ 8
10 More Napoleon 9
11 Problem 4 9
12 Problem 5 9
13 Problem 6 9
14 Point addition 11
15 Problem 7 11
16 Pompeiu's Theorem 12
17 Problem 9 13
18 Studying "quadrilateral" $A B^{\prime} C^{\prime} D$ 14
19 Quadrilateral $A B^{\prime \prime} C^{\prime \prime} D$ 14
20 Problem 10 15
21 Circles O_{1} and O_{2} 15
22 Three similar triangles 16
23 Problem 11 17
24 Excircle I_{a} 17
25 Problem 11 18
26 Problem 12 21
27 Problem 13 21
28 Problem 14.c 21
29 Van Aubel's Theorem 22
30 Problem 16.a 23
31 Problem 16.b 23
32 Problem 16.c 23
33 Problem 16.d 23
34 Proof 2 of perpendicularization lemma 24
35 Problem 18.b 25
36 Problem 18.c 25
37 Generalization of problem 14 26
38 Problem 19 26
39 Problem 20 27
40 Problem 21 27

1 Introduction (for lack of a better section header)

There are generally two opposite approaches to Olympiad geometry. Some prefer to draw the diagram and simply stare (labeling points only clutters the diagram!), waiting for the interactions between the problem's various elements to present themselves visually. Others toss the diagram onto the complex or coordinate plane and attempt to establish the necessary connections through algebraic calculation rather than geometric insight.

This article discusses an interesting way to visualize and approach a variety of geometry problems by combining these two common methods: synthetic and analytic. We'll focus on a theorem known as "The Fundamental Theorem of Directly Similar Figures" [4] or "The Mean Geometry Theorem" (abbreviated here as MGT). Although the result is quite simple, it nevertheless encourages a powerful new point of view.

1.1 Basic Definitions

A figure has positive orientation if its vertices are listed in counterclockwise order (like pentagons $A B C D E$ or $L M N O P$ in diagram 1), and otherwise it has negative orientation (like $V W X Y Z$ or even $E D C B A$). Two figures are similar if. . ., well, we're all familiar with similar figures; two similar figures are directly similar if they have the same orientation, and otherwise they're inversely similar. For example, pentagon $A B C D E$ is directly similar to pentagon $L M N O P$, but inversely similar to $V W X Y Z$.

Figure 1: Direct and inverse similarity

1.2 Point Averages

Now for some non-standard notation. We define the average of two points A and B as the midpoint M of segment $A B$, and we write $\frac{1}{2} A+\frac{1}{2} B=M$. We can also compute weighted averages with weights other than $\frac{1}{2}$ and $\frac{1}{2}$, as long as the weights add to 1: the weighted average $(1-k) A+(k) B$ is the point X on line $A B$ so that $A X / A B=k$. (This is consistent with the complex-number model of the plane, though we will still treat A and B as points rather than complex values.) For example, $N=\frac{2}{3} A+\frac{1}{3} B$ is one-third of the way across from A to B (see Figure 2).

Figure 2: Point averaging

1.3 Figure Averages

We can use the concept of averaging points to define the (weighted) average of two figures, where a figure may be a polygon, circle, or any other 2-dimensional path or region (this article will stick to polygons). To average two figures, simply take the appropriate average of corresponding pairs of points. For polygons, we need only average corresponding vertices:

$$
\begin{gathered}
\frac{1}{2} A_{i}+\frac{1}{2} B_{i}=C_{i} \text { for } i=1,2,3,4, \text { so } \\
\frac{1}{2} A_{1} A_{2} A_{3} A_{4}+\frac{1}{2} B_{1} B_{2} B_{3} B_{4}=C_{1} C_{2} C_{3} C_{4}
\end{gathered}
$$

Figure 3: Figure averaging

1.4 Finally!

By now you can probably guess the punchline.
Mean Geometry Theorem. The (weighted) average of two directly similar figures is directly similar to the two original figures.

Look again at Figure 3. Quadrilaterals $A_{1} A_{2} A_{3} A_{4}$ and $B_{1} B_{2} B_{3} B_{4}$ are directly similar, so the Mean Geometry Theorem guarantees that their average, $C_{1} C_{2} C_{3} C_{4}$, is directly similar to both of them.

2 Proofs of MGT

We mentioned in the introduction that this article incorporates some ideas from both synthetic and analytic geometry. Here we offer two proofs of the Theorem - one based in each category - to better illustrate the connection.

Although MGT holds for all types of figures, it suffices to prove result for triangles (why?):

MGT for Triangles. If $\triangle_{a}=A_{1} A_{2} A_{3}$ and $\triangle_{b}=B_{1} B_{2} B_{3}$ are directly similar triangles in the plane, then the weighted average $\triangle_{c}=$ $(1-k) A_{1} A_{2} A_{3}+(k) B_{1} B_{2} B_{3}=C_{1} C_{2} C_{3}$ is similar to both \triangle_{a} and \triangle_{b} (Figure 4).

2.1 Proof 1: Spiral Similarity

Figure 4: MGT for triangles

If \triangle_{b} is simply a translation of \triangle_{a}, say by vector $\overrightarrow{\mathbf{V}}$, then the translation by vector $k \overrightarrow{\mathbf{V}}$ sends \triangle_{a} to \triangle_{c}, so they are directly similar (in fact congruent).

Otherwise, there exists a unique spiral similarity ${ }^{1}{ }_{\theta}^{r} O$ that takes \triangle_{a} to \triangle_{b} (see [5, Theorem 4.82]). The three triangles $A_{i} O B_{i}$ (for $i=1,2,3$) have $\angle A_{i} O B_{i}=\theta$ and $O B_{i} / O A_{i}=r$, so they are all similar (see Figure 5).

Figure 5: Similar triangles $A_{i} O B_{i}$

Figure 6: Similar triangles $A_{i} O C_{i}$

Since C_{1}, C_{2}, and C_{3} are in corresponding positions in these three similar triangles (since $A_{i} C_{i} / A_{i} B_{i}=k$ for $i=1,2,3)$, the three triangles $A_{i} O C_{i}(i=1,2,3)$ are similar to each other (Figure 6). Thus the spiral similarity ${ }_{\theta^{\prime}}^{r^{\prime}} O$, where $\theta^{\prime}=\angle A_{1} O C_{1}$ and $r^{\prime}=O C_{1} / O A_{1}$, sends $\triangle A_{1} A_{2} A_{3}$ to $\triangle C_{1} C_{2} C_{3}$, so these triangles are directly similar, as desired.

2.2 Proof 2: Complex Numbers

We'll use capital letters for points and lower case for the corresponding complex numbers: point A_{1} corresponds to the complex number a_{1}, and so on.

[^0]Since the triangles are similar, $\angle A_{2} A_{1} A_{3}=\angle B_{2} B_{1} B_{3}$ and $A_{1} A_{3} / A_{1} A_{2}=B_{1} B_{3} / B_{1} B_{2}$. If z is the complex number with argument $\angle A_{2} A_{1} A_{3}$ and magnitude $A_{1} A_{3} / A_{1} A_{2}$, we have $\frac{a_{3}-a_{1}}{a_{2}-a_{1}}=z=\frac{b_{3}-b_{1}}{b_{2}-b_{1}}$. Or, rearranged,

$$
a_{3}=(1-z) a_{1}+(z) a_{2} \quad \text { and } \quad b_{3}=(1-z) b_{1}+(z) b_{2}
$$

To prove the theorem, we need to show that $\triangle C_{1} C_{2} C_{3}$ behaves similarly (no pun intended), i.e. we need to show that $c_{3}=(1-z) c_{1}+(z) c_{2}$. But since $c_{i}=(1-k) a_{i}+(k) b_{i}$ for $i=1,2,3$ (by definition of \triangle_{c}), this equality follows directly from ($\boldsymbol{Q}_{\mathbf{\circ}}$):

$$
\begin{aligned}
c_{3} & =(1-k) a_{3}+(k) b_{3} \\
& =(1-k)\left((1-z) a_{1}+(z) a_{2}\right)+(k)\left((1-z) b_{1}+(z) b_{2}\right) \\
& =(1-z)\left((1-k) a_{1}+(k) b_{1}\right)+(z)\left((1-k) a_{2}+(k) b_{2}\right) \\
& =(1-z) c_{1}+(z) c_{2},
\end{aligned}
$$

as desired.

3 Some Problems

The theorem has been proved, but there might be some lingering doubts about the usefulness of such a seemingly simple and specialized statement. ${ }^{2}$ In this section, we'll put the Theorem to work, and we'll learn to recognize when and how MGT may be applied to a variety of problems.

3.1 Equilaterals Joined at the Hip

Problem 1 (Engel). $O A B$ and $O A_{1} B_{1}$ are positively oriented regular triangles with a common vertex O. Show that the midpoints of $O B, O A_{1}$, and $A B_{1}$ are vertices of a regular triangle. (Remember: positively oriented means the vertices are listed in counterclockwise order.)

Figure 7: Problem 1

To show that $D E F$ is equilateral, we'd like to express $\triangle D E F$ as an average of two other directly similar equilateral triangles. From the diagram we see that

$$
\frac{1}{2} A+\frac{1}{2} B_{1}=D, \quad \frac{1}{2} B+\frac{1}{2} O=E, \quad \text { and } \quad \frac{1}{2} O+\frac{1}{2} A_{1}=F
$$

and putting these together yields

$$
\frac{1}{2} A B O+\frac{1}{2} B_{1} O A_{1}=D E F
$$

So we're done by MGT, right?
Let's make sure everything is in place. Are triangles $A B O$ and $B_{1} O A_{1}$ directly similar? The problem tells us that they are both positively oriented equilateral triangles, so yes. Are we indeed taking a weighted average of the two triangles? In other words, do the weights add to 1 ? Of course! $\frac{1}{2}+\frac{1}{2}=1$.

Now we can confidently apply the Mean Geometry Theorem and conclude that triangle $D E F$ must be directly similar to $\triangle A B O$ and $\triangle B_{1} O A_{1}$, i.e. $\triangle D E F$ is equilateral.

3.2 Napoleon's Last Hurrah

Problem 2 (Napoleon's Theorem). If equilateral triangles $B C P, C A Q, A B R$ are erected externally on the sides of triangle $A B C$, their centers X, Y, Z form an equilateral triangle (Figure 8).

[^1]

Figure 8: Napoleon's Theorem

Figure 9: Equilateral triangle $J K L$

The setup looks a lot like the configuration in the first problem, where two equilaterals share a common vertex. We can try to mimic this earlier configuration by considering equilateral triangle $\frac{1}{2} P C B+\frac{1}{2} B A R=J K L$. (Figure 9)

Now the way to reach the target points, X, Y, and Z, presents itself: X is on median $J C$, and it's $\frac{1}{3}$ of the way across. This means that $X=\frac{2}{3} J+\frac{1}{3} C$, and likewise for Y and Z. We can write

$$
X Y Z=\frac{2}{3} J K L+\frac{1}{3} C Q A
$$

and since both $\triangle J K L$ and $\triangle C Q A$ are negatively oriented equilateral triangles, we're done!

3.3 Extending MGT?

Let's look closer at that solution. First we averaged $P C B$ and $B A R: \frac{1}{2} P C B+\frac{1}{2} B A R=J K L$. Then, we averaged this with $C Q A: \frac{2}{3} J K L+\frac{1}{3} C Q A=X Y Z$. Momentarily indulging ourselves in some questionable manipulation, we can substitute the first equation into the second and simplify to find

$$
\frac{1}{3} P C B+\frac{1}{3} B A R+\frac{1}{3} C Q A=X Y Z
$$

This suggests that we may be able to generalize MGT to three figures, like so:
Extended MGT. Define the weighted average of 3 points $\omega_{1} P_{1}+\omega_{2} P_{2}+\omega_{3} P_{3}$ (where the weights ω_{1}, ω_{2}, and ω_{3} are real numbers and add to 1) just as we would in the complex plane. ${ }^{3}$ Then if $\triangle A_{1} A_{2} A_{3}, \triangle B_{1} B_{2} B_{3}$, and $\triangle C_{1} C_{2} C_{3}$ are directly similar triangles, their weighted average

$$
\omega_{a} A_{1} A_{2} A_{3}+\omega_{b} B_{1} B_{2} B_{3}+\omega_{c} C_{1} C_{2} C_{3}
$$

is also directly similar to them. This naturally extends to include figures other than triangles (as long as they're all similar to each other) or more than 3 similar figures (as long as the weights add to 1).

Can you prove this? Anyway, by this generalized version of MGT, equation ($\boldsymbol{\oplus}$) alone provides a succinct, one-line proof of Napoleon's Theorem. (Cool, huh?)

3.4 But Wait, There's More!

Problem 3. Napoleon isn't done with us yet: prove that triangles $A B C$ and $X Y Z$ have the same centroid.

[^2]Like Napoleon's Theorem itself, this can also be done in one line. Here's the first half:

$$
\begin{equation*}
\frac{1}{3} B X C+\frac{1}{3} C Y A+\frac{1}{3} A Z B=? ? ? \tag{৫}
\end{equation*}
$$

Before you read ahead, try to figure out how and why this proves the problem. (Jeopardy song plays...) Ok, welcome back!

The three red triangles are isosceles $30-120-30$ triangles, so they are all similar. If G and H denote the centroids of $\triangle A B C$ and $\triangle X Y Z$ respectively, then the result of the expression in equation (Ω) is triangle $G H G$, which (by the Theorem) must also be a $30-120-30$ triangle. But two of its vertices are at the same place! The triangle has thus degenerated into a point, so all three of its vertices are at the same place, and $G=H$.

3.5 I Can't Take Any More Equilaterals! and the Asymmetric Propeller

Figure 10: More Napoleon

Let's do one more problem of a similar flavor before we move on.
Problem 4. Positively oriented equilateral triangles $X A B, X C D$, and $X E F$ share a vertex X. If P, Q, and R are the midpoints of $B C, D E$, and $F A$ respectively, prove that $P Q R$ is equilateral.

Problem 5 (Crux Mathematicorum). In quadrilateral $A B C D, M$ is the midpoint of $A B$, and three equilateral triangles $B C E, C D F$, and $D A G$ are constructed externally. If N is the midpoint of $E F$ and P is the midpoint of $F G$, prove that MNP is equilateral.

Problem 6. The four triangles $A B C, A A_{b} A_{c}, B_{a} B B_{c}$, and $C_{a} C_{b} C$ are directly similar, and M_{a}, M_{b}, and M_{c} are the midpoints of $B_{a} C_{a}, C_{b} A_{b}$, and $A_{c} B_{c}$. Show that $M_{a} M_{b} M_{c}$ is also similar to $A B C$.

Figure 11: Problem 4

Figure 12: Problem 5

Figure 13: Problem 6

Hm, didn't I just say one more problem?
Indeed, all we have to do is solve problem 6; the rest come free. The diagrams are drawn to illustrate illustrate how the first two problems are special cases of problem $6 .{ }^{4}$ So, let's solve problem 6, known as the Asymmetric Propeller [2].

The problem gives us a plethora of similar triangles to work with, so our first instinct should be to try to write triangle $M_{a} M_{b} M_{c}$ as an average of these:

$$
M_{a} M_{b} M_{c}=\omega A B C+\omega_{a} A A_{b} A_{c}+\omega_{b} B_{a} B B_{c}+\omega_{c} C_{a} C_{b} C .
$$

[^3]The three triangles $A A_{b} A_{c}, B_{a} B B_{c}$, and $C_{a} C_{b} C$ play identical roles in the problem, so we have every reason to guess that $\omega_{a}=\omega_{b}=\omega_{c}$. Now, for (\diamond) to work, we need

$$
M_{A}=\frac{1}{2}\left(B_{a}+C_{a}\right)=\left(\omega+\omega_{a}\right) A+\omega_{a}\left(B_{a}+C_{a}\right)
$$

If we set $\omega_{a}=\frac{1}{2}$ and $\omega=-\omega_{a}=-\frac{1}{2}$, then this works out perfectly (and likewise for M_{b} and M_{c}). So does

$$
M_{a} M_{b} M_{c}=-\frac{1}{2} A B C+\frac{1}{2} A A_{b} A_{c}+\frac{1}{2} B_{a} B B_{c}+\frac{1}{2} C_{a} C_{b} C
$$

finish the proof? ${ }^{5}$ The triangles are all similar and the weights add to $1\left(=-\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)$, so yes. Sweet, another one liner.

[^4]
4 Figure Addition

I keep stressing that the weights in a weighted average must add to 1 . What would happen if they didn't?
In the complex-number proof of MGT from section 2.2 , there's really no reason the weights must be k and $(1-k)$. They could be any real numbers, and the proof works the same! There is one subtle difference, though. In the diagram to the right, use weights of $\omega_{1}=\omega_{2}=1$, and we'll try to calculate $A+B$. Where is it?

To add vectors or complex numbers like this, we need to know where the origin is. If the origin is at, say, M, the midpoint between A and B, then $A+B$ represents the sum of the blue vectors $\overrightarrow{\mathbf{M A}}+\overrightarrow{\mathbf{M B}}=\overrightarrow{\mathbf{0}}=M$. But if we put the origin at a different point O, then the sum $A+B$ is now the sum of the red vectors $\overrightarrow{\mathbf{O A}}+\overrightarrow{\mathbf{O B}}=\overrightarrow{\mathbf{O P}}=P$. So, with point addition, the sum depends on the location of the origin, i.e. we must first specify an origin. With this minor change, MGT

Figure 14: Point addition extends yet again:

MGT: Figure Addition. For real numbers ω_{1} and ω_{2}, define the sum of points $\omega_{1} P_{1}+\omega_{2} P_{2}$ as the endpoint of the vector $\omega_{1} \overrightarrow{\mathbf{O P}_{\mathbf{1}}}+\omega_{2} \overrightarrow{\mathbf{O P}_{\mathbf{2}}}$, where O is a specified origin. Then if $\triangle A_{1} A_{2} A_{3}$ and $\triangle B_{1} B_{2} B_{3}$ are directly similar, the sum of figures $\omega_{a} A_{1} A_{2} A_{3}+\omega_{b} B_{1} B_{2} B_{3}$ (formed by adding corresponding vertices) is directly similar to the original two triangles. As before, this naturally extends to more complicated figures and to more than two figures.

There is another way to visualize figure addition through dilation. For two similar triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$, the sum $A_{1} B_{1} C_{1}+A_{2} B_{2} C_{2}$ may be constructed by averaging the two triangles, $\frac{1}{2} A_{1} B_{1} C_{1}+\frac{1}{2} A_{2} B_{2} C_{2}$, and then dilating this with center O and ratio 2 .

4.1 When Did the IMO Get So Easy? (answer: 1977)

Problem 7 (IMO jury 1977 [6]). $O A B$ and $O A^{\prime} B^{\prime}$ are regular triangles of the same orientation, S is the centroid of $\triangle O A B$, and M and N are the midpoints of $A^{\prime} B$ and $A B^{\prime}$, respectively. Show that $\triangle S M B^{\prime} \sim \triangle S N A^{\prime}$ (Figure 15).
(In the diagram, points W, X, Y, and Z are midpoints.)
First of all, the red triangles both look like $30-60-90$ triangles, and if we can prove that, we're done. The two equilateral triangles give us plenty of $30-60-90$ s to work with; all we have to do is find the right ones!

Points O, Z, N, and W form a parallelogram, so if O is the origin, $Z+W=N$. With a little experimentation, we arrive at $N S A^{\prime}=Z O A^{\prime}+W S O$, and since both $\triangle Z O A^{\prime}$ and $\triangle W S O$ are positively oriented $30-60-90$ triangles, so is $\triangle N S A^{\prime}$. Similarly, $M S B^{\prime}=Y O B^{\prime}+X S O$ (again with O as origin) proves that $\triangle M S B^{\prime}$ is a negatively oriented $30-60-90$ triangle. Whew, that was quick!

4.2 A Fresh Look at an Old Result (1936, to be precise)

Figure 15: Problem 7

Problem 8 (Pompeiu's Theorem [1]). Given an equilateral triangle $A B C$ and a point P that does not lie on the circumcircle of $A B C$, one can construct a triangle of side lengths equal to $P A, P B$, and $P C$. If P lies on the circumcircle, then one of these three lengths is equal to the sum of the other two.

Erect equilateral triangles $P C Y$ and $B P X$ with the same orientation as $\triangle A B C$. With P as origin, consider equilateral triangle $P C Y+B P X=B C A^{\prime}$. It must be equilateral with the same orientation as $A B C$, which

Figure 16: Pompeiu's Theorem
means $A^{\prime}=Y+X=A$, i.e. $P Y A X$ is a parallelogram. Notice that $\triangle A P Y$ has $A P=A P, P Y=C P$, and $Y A=P X=B P$, so if it is not degenerate, $\triangle A P Y$ is the triangle we're looking for.

When is this triangle degenerate, i.e. when are A, P and Y collinear? This happens if and only if (using directed angles modulo $\left.180^{\circ}\right) \angle C P A=\angle C P Y=60^{\circ}=\angle C B A$, i.e. quadrilateral $A B C P$ is cyclic. And certainly, if $\triangle A P Y$ is degenerate, then one of its sides equals the sum of the other two.

5 A Few Harder Problems

At this point we've become proficient in utilizing the various forms of the Theorem, and we've learned to look for a MGT approach when the problem hands us loads of similar triangles with which to play. But MGT can be useful in many other situations as well, even if its application may be far from obvious. In this section, we'll look at a few harder problems to stress that the MGT may not solve every problem immediately, but it's a valuable method to keep in mind as you explore a problem. It may be that MGT is only one of many steps in your solution. Or, ideas related to MGT may lead you to a solution that doesn't use it at all. The point is that looking at a diagram from an MGT viewpoint may tell you things that you formerly wouldn't have noticed.

This brings up another point: in order to recognize uses for MGT, you must have an accurate diagram - or two, or three - to look at. This article is filled with diagrams for exactly that purpose. (Whether you're solving a geometry problem using MGT or not, it's usually a good idea to have a decent diagram handy!)

On that note, let's bring on the problems.

5.1 A Pretty(,) Busy Diagram

Problem 9 (IMO Shortlist 2000, G6). Let $A B C D$ be a convex quadrilateral with $A B$ not parallel to $C D$, and let X be a point inside $A B C D$ such that $\angle A D X=\angle B C X<90^{\circ}$ and $\angle D A X=\angle C B X<90^{\circ}$. If Y is the point of intersection of the perpendicular bisectors of $A B$ and $C D$, prove that $\angle A Y B=2 \angle A D X$.

Figure 17: Problem 9
First thing to notice: by simply relabeling the diagram, it must also be true that $\angle D Y C=2 \angle D A X$. So, designate $\angle A D X=\alpha$ and $\angle D A X=\delta$. Next, notice that triangles $A X D$ and $B X C$ are similar. Ooh, that means we should form another similar triangle $\frac{1}{2} A X D+\frac{1}{2} B X C$! That's a decent thought, but unfortunately, even though $A X D$ and $B X C$ are similar, they're not directly similar.

It may not clear where to go from here, but since it's necessary to start somewhere, we'll begin with the only tangible fact we have: similar triangles $A X D$ and $B X C$. It's interesting that no matter how these two triangles are hinged or scaled around X, point Y still has its curious property. This suggests a possible direction for exploration: scale the triangles and see what happens to point Y.

Let's leave triangle $A X D$ fixed while we enlarge and shrink $B X C$. What size triangle would be easier to analyze? How about zero! Consider quadrilateral $A B^{\prime} C^{\prime} D$, where $\triangle B^{\prime} X C^{\prime}$ has shrunken to the degenerate triangle at point X (Figure 18). The corresponding Y^{\prime} is the intersection of the perpendicular bisectors of $A B^{\prime}=A X$ and $D C^{\prime}=D X$, i.e. the circumcenter O of triangle $A X D$. Is it true that $2 \angle A D X=\angle A O X$? Yes, since arc $\widehat{A X}$ of circle O has measure 2α. So when triangle $B X C$ shrinks to zero, everything works out as expected.

What other size for triangle $B X C$ might work well? Let's look at quadrilateral $A B^{\prime \prime} C^{\prime \prime} D$, where $B^{\prime \prime} X C^{\prime \prime}$ is congruent to $A X D$ as shown in Figure 19. To locate $Y^{\prime \prime}$, we should be looking for the perpendicular bisectors

Figure 18: Studying "quadrilateral" $A B^{\prime} C^{\prime} D$
of $A B^{\prime \prime}$ and $C^{\prime \prime} D$. But these are the same line $\overleftrightarrow{M N}$, so where is $Y^{\prime \prime}$? We can instead locate $Y^{\prime \prime}$ by finding the point on this line so that $\angle A Y^{\prime \prime} B^{\prime \prime}=2 \alpha$, since this is another property our Y s should have. This means that $\angle A Y^{\prime \prime} X=\alpha=\angle A D X$, so $A X Y^{\prime \prime} D$ is cyclic, i.e. $Y^{\prime \prime}$ is the second intersection of circle O with line $M N$. (If the circle happens to be tangent to line $M N$, 'second intersection' simply means tangency point.)

Figure 19: Quadrilateral $A B^{\prime \prime} C^{\prime \prime} D$
It seems that we've lost sight of our original problem. We've studied quadrilaterals $A X X D$ and $A B^{\prime \prime} C^{\prime \prime} D$, but not the original $A B C D$. Luckily, a perusal of diagram 19 reveals the next step: triangles $A O X, A Y^{\prime \prime} B^{\prime \prime}$, and $A Y B$ are similar since they're all isosceles with vertex angle 2α, so we should be able to average them. Indeed, if $X B / X B^{\prime \prime}=k$, then we should have $(1-k) A O X+(k) A Y^{\prime \prime} B^{\prime \prime}=A Y B$. This is (almost) the last step to a complete solution! A full, self-contained solution is given below.

Full Solution. Let $X B / X A=k$, and dilate B and C around X with ratio $1 / k$ to points $B^{\prime \prime}$ and $C^{\prime \prime}$ respectively, so that $A B^{\prime \prime} C^{\prime \prime} D$ is an isosceles trapezoid. M and N are the midpoints of $A B^{\prime \prime}$ and $C^{\prime \prime} D$. Define O as the circumcenter of triangle $A X D$, and let $Y^{\prime \prime}$ be the second intersection of circle $A D X$ with line $M N$. If $\angle A D X=\alpha$ and $\angle D A X=\delta$, it follows that $\angle A O X=2 \alpha, \angle A Y^{\prime \prime} X=\alpha$ which implies $\angle A Y^{\prime \prime} B^{\prime \prime}=2 \alpha$, and likewise, $\angle D O X=2 \delta$ and $\angle D Y^{\prime \prime} C^{\prime \prime}=2 \delta$. Therefore, the isosceles triangles $A O X$ and $A Y^{\prime \prime} B^{\prime \prime}$ are similar, as are triangles $D O X$ and $D Y^{\prime \prime} C^{\prime \prime}$.

Define $Y_{1}=(1-k) O+(k) Y^{\prime \prime}$, and notice that triangles $A Y_{1} B=(1-k) A O X+(k) A Y^{\prime \prime} B^{\prime \prime}$ and $D Y_{1} C=$
$(1-k) D O X+(k) D Y^{\prime \prime} C^{\prime \prime}$ are isosceles by MGT. Thus, Y_{1} is the intersection of the perpendicular bisectors of $A B$ and $C D$, i.e. $Y_{1}=Y$. Furthermore, by our application of MGT, $\angle A Y B=\angle A O X=2 \alpha$, QED.

5.2 Hidden Circles

Problem 10 (USA TST $2005 \# 6$). Let $A B C$ be an acute scalene triangle with O as its circumcenter. Point P lies inside triangle $A B C$ with $\angle P A B=\angle P B C$ and $\angle P A C=\angle P C B$. Point Q lies on line $B C$ with $Q A=Q P$. Prove that $\angle A Q P=2 \angle O Q B$.

Figure 20: Problem 10
Most of the diagram is straightforward: O is the circumcenter, Q is the intersection of $B C$ with the perpendicular bisector of $A P$, and I've added M, the intersection of $A P$ with $B C$. Everything is simple to navigate except P itself, so that's where we'll start investigating.

The first strange angle equality, i.e. $\angle P A B=\angle P B C$, shows that $\triangle M A B \sim \triangle M B P$. Thus, $M A / M B=$ $M B / M P$, or $(M A)(M P)=(M B)^{2}$. This shows, by power of a point, that the circle through A, P, and B is tangent to line $M B$ at $B .{ }^{6}$ Likewise, the circle through A, P, and C is tangent to $M C$ at C. (Call these two circles [and their centers] O_{1} and O_{2} respectively.) Finally, $(M B)^{2}=(M A)(M P)=(M C)^{2}$, so M is the midpoint of $B C$.

Figure 21: Circles O_{1} and O_{2}
The diagram becomes much clearer from the viewpoint of the two circles. The circles intersect at A and P, and line $B C$ is their common tangent. Point Q, being the intersection of their axis of symmetry (line $O_{1} O_{2}$) with a common tangent (line $B C$), must be the center of homothecy between circles O_{1} and O_{2}.

Let X be the midpoint of $A P$. We're asked to prove that $\angle A Q P=2 \angle O Q B$, or equivalently, $\angle A Q X=\angle O Q M$. But triangles $A Q X$ and $O Q M$ are both right triangles, so we need to prove that they are similar. Here's where

[^5]Mean Geometry might come in handy: to prove that these triangles are similar, we might be able to find a third triangle similar to, say $\triangle A Q X$, and then express triangle $O Q M$ as a weighted average of those two. So now we hunt for a third similar triangle. In order for this to work, this triangle should have one vertex at Q, one vertex along line $X M$, and one vertex along line $A O$. What key points are on these two lines? Just A and P. And since A is already being used, let's think about P. If triangles $A Q X$ and $O Q M$ were similar to triangle $Z Q P$, where would this mystery point Z have to be? We already want it on line $A O$, and since $\angle A Q X=\angle X Q P=\angle Z Q P$, we would also need Z to be on line $Q X$. So define $Z=A O \cap Q X$, and let's see if $\triangle Z Q P$ is indeed the triangle we're looking for. First of all, is it a right triangle?

Angle $Q P Z$ is a right angle if and only if $\angle Q A Z$ is right, so we need $Q A \perp O A$, i.e. $Q A$ should be tangent to circle O at A. It turns out to be true, as follows. Let T be the second intersection of $Q A$ with circle O_{1}. If ${ }^{r} Q$ (where $r=Q O_{2} / Q O_{1}$) is the homothecy taking circle O_{1} to circle O_{2}, we have ${ }^{r} Q(T)=A$ and ${ }^{r} Q(B)=C$, so $\angle A C B=\angle T B Q=\angle T A B$. Thus, triangles $Q B A$ and $Q A C$ are similar, so $(Q B)(Q C)=(Q A)^{2}$, and $Q A$ is tangent to circle O. So (by tracing backwards through a few lines of reasoning above), triangle $Z Q P$ actually does have a right angle at P. This means it is similar to triangle $A Q X$.

Figure 22: Three similar triangles
The next part of our initial plan was to find a weighted average of triangles $Z Q P$ and $A Q X$ that would produce triangle $O Q M$, thus completing the proof. So, all we need to show is that $A O / Z O=X M / P M$. Good luck.

Those segment lengths aren't easy to calculate, even with plenty of paper and tons of time. For the first time in this article, MGT fails to miraculously save the day. But we've come far enough with the MGT idea so that the proof is moments away. Let ${ }_{\theta}^{r} Q$ be the spiral dilation centered at Q that sends $X P$ to $A Z$. Since M is on line $X P$, ${ }_{\theta}^{r} Q(M)=M^{\prime}$ is on line $Z A$. Also, since triangle $M^{\prime} Q M$ is similar to triangle $A Q X$, we have $\angle Q M M^{\prime}=90^{\circ}$, so M^{\prime} is also on the perpendicular bisector of $B C$. This means ${ }_{\theta}^{r} Q(M)=M^{\prime}=O$. Thus, $\angle O Q M=\angle A Q X$, as desired. (Notice that, even though MGT was a driving force for most of the solution, not a single mention of it is necessary in the final writeup.)

5.3 Nagel Who?

Problem 11 (USAMO $2001 \# 2$). Let $A B C$ be a triangle and let ω be its incircle. Denote by D_{1} and E_{1} the points where ω is tangent to sides $B C$ and $A C$, respectively. Denote by D_{2} and E_{2} the points on sides $B C$ and $A C$, respectively, such that $C D_{2}=B D_{1}$ and $C E_{2}=A E_{1}$, and denote by P the point of intersection of segments $A D_{2}$ and $B E_{2}$. Circle ω intersects segment $A D_{2}$ at two points, the closer of which to the vertex A is denoted by Q. Prove that $A Q=D_{2} P$.

In the diagram I've added F_{1} and F_{2} to preserve symmetry, and I included the midpoints of the sides of the triangle.

Figure 23: Problem 11

Figure 24: Excircle I_{a}

Using the standard notations $a=B C, b=C A, c=A B$, and $s=\frac{1}{2}(a+b+c)$, it is relatively well known that $B D_{1}=s-b$. Indeed, if $A E_{1}=A F_{1}=x, B F_{1}=B D_{1}=y, C D_{1}=C E_{1}=z$, then the system $y+z=a, z+x=b$, $x+y=c$ can be solved to give $B D_{1}=y=(c+a-b) / 2=s-b$. Likewise, if the excircle opposite A is tangent to $B C$ at V, a similar calculation shows that $C V=s-b=B D_{1}$, i.e. $V=D_{2}$. So D_{2}, E_{2}, F_{2} are the tangency points of $B C, C A, A B$ with the triangle's three excircles.

Another relatively well-known point in the diagram is P, commonly referred to as the Nagel point of triangle $A B C$. It's simply the intersection of the three cevians $A D_{2}, B E_{2}$, and $C F_{2}$, which must concur by Ceva's theorem:

$$
\frac{B D_{2}}{D_{2} C} \cdot \frac{C E_{2}}{E_{2} A} \cdot \frac{A F_{2}}{F_{2} B}=\frac{s-c}{s-b} \cdot \frac{s-a}{s-c} \cdot \frac{s-b}{s-a}=1
$$

A useful property of the Nagel point, ${ }^{7}$ other than its mere existence, is how its defining cevians interact with the incircle: line $A D_{2}$ intersects the incircle at point Q diametrically opposite from D_{1}. To prove this, let $r=A I / A I_{a}$ (in Figure 24), so that ${ }^{r} A$ is the homothecy centered at A taking excircle I_{A} to incircle I. Since $D_{2} I_{A}$ is perpendicular to $B C$, its image through ${ }^{r} A$, namely $Q I$, is also perpendicular to $B C$. Therefore, $Q D_{1}$ is a diameter of circle I. The same goes for diameters $E_{1} R$ and $F_{1} S$.

Now to the problem. The midpoints D, E, and F inspire us to consider

$$
\frac{1}{2} \triangle D_{1} E_{1} F_{1}+\frac{1}{2} \triangle D_{2} E_{2} F_{2}=\triangle D E F
$$

Triangles $D_{1} E_{1} F_{1}$ and $D_{2} E_{2} F_{2}$ aren't similar, so MGT doesn't tell us anything directly. But it's still worth noticing.
If it's true that $A Q=D_{2} P$, it must also happen that $B R=E_{2} P$ and $C S=F_{2} P$. This means that, with P as origin, we'd like to be able to show that

$$
A B C+D_{2} E_{2} F_{2}=Q R S
$$

Again, these triangles are not similar, so MGT isn't applicable. But this equation has striking similarities with (\star). These similarities become more pronounced if we rewrite equation (\star) as

$$
-2 D E F+D_{2} E_{2} F_{2}=-D_{1} E_{1} F_{1}
$$

[^6]

Figure 25: Problem 11

Triangle $-2 D E F$ is simply a translation of $A B C$, and triangle $-D_{1} E_{1} F_{1}$ is a translation of $Q R S$. The two equations are almost identical! This inspires the following observation:

Non-similar Figure Addition. If three triangles (figures) satisfy $\omega_{1} \triangle_{1}+\omega_{2} \triangle_{2}=\triangle_{3}$, and if \triangle_{1}^{\prime} is a translated version of \triangle_{1}, then $\omega_{1} \triangle_{1}^{\prime}+\omega_{2} \triangle_{2}$ is a translation of \triangle_{3}, regardless of the location of the origin.

Indeed, if $\triangle_{1}^{\prime}=\triangle_{1}+\overrightarrow{\mathbf{V}},{ }^{8}$ then

$$
\omega_{1} \triangle_{1}^{\prime}+\omega_{2} \triangle_{2}=\omega_{1} \triangle_{1}+\omega_{2} \triangle_{2}+\omega_{1} \overrightarrow{\mathbf{V}}=\triangle_{3}+\omega_{1} \overrightarrow{\mathbf{V}}
$$

Now we can finish the problem. Beginning with equation $\left(\star^{\prime}\right)$, translate $-2 D E F$ to coincide with $A B C$. The above observation (with our origin still at P) proves that $Q^{\prime} R^{\prime} S^{\prime}=A B C+D_{2} E_{2} F_{2}$ must be a translation of $Q R S$. But since $A+D_{2}=Q^{\prime}$ lies on $A D_{2}$, and likewise for R^{\prime} and S^{\prime}, triangles $Q R S$ and $Q^{\prime} R^{\prime} S^{\prime}$ are also homothetic with center P. So the two triangles must be identical, and in particular, $Q=Q^{\prime}=A+D_{2}$. So $\overrightarrow{\mathbf{A Q}}=\overrightarrow{\mathbf{P} \mathbf{D}_{\mathbf{2}}}$, proving the desired result.
$8_{\text {i.e. a translation by vector }} \overrightarrow{\mathbf{V}}$

6 Additional Problems

Problem 12. Recall problem 4: "Positively oriented equilateral triangles $X A B, X C D$, and $X E F$ share a vertex X. If P, Q, and R are the midpoints of $B C, D E$, and $F A$ respectively, prove that $P Q R$ is equilateral." Prove this problem using Napoleon's Theorem.

Problem 13 (Crux Mathematicorum). A line parallel to the side $A C$ of equilateral $\triangle A B C$ intersects $B C$ at M and $A B$ at P, thus making $B M P$ equilateral as well. D is the center of $B M P$ and E is the midpoint of $C P$. Determine the angles of $A D E$.

Problem 14. The following theorem appears in Geometry Revisited [5] as a special case of a theorem of Petersen and Schoute: If $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are two directly similar triangles, while $A A^{\prime} A^{\prime \prime}, B B^{\prime} B^{\prime \prime}, C C^{\prime} C^{\prime \prime}$ are three directly similar triangles, then $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is directly similar to $\triangle A B C$.
a. Show that this theorem generalizes the triangle version of MGT.
b. What minor adjustment can be made to the statement of MGT to account for this generalization (and it's proof)?
c. Show that Napoleon's theorem is a special case of this theorem.

Problem 15 (Van Aubel's Theorem). Given an arbitrary planar quadrilateral, place a square outwardly on each side, and connect the centers of opposite squares. Then these two lines perpendicular and of equal length.

Problem 16. Equilateral triangles $A E B, B F C, C G D, D H A$ are erected outwardly on the sides of a plane quadrilateral $A B C D$.
a. Let M, N, O, and P be the midpoints of segments $E G, H F, A C$, and $B D$ respectively. What is the shape of PMON?
b. M_{d} and M_{a} are the centroids of $\triangle D A H$ and $\triangle A E B$, and equilateral triangle $M_{d} T M_{a}$ is oppositely oriented with respect to $A B C D$. Find the angles of triangle $F T G$.
c. M_{a} and M_{c} are the centroids of $\triangle A E B$ and $\triangle C G D$. Prove that segments $M_{a} M_{c}$ and $F H$ are perpendicular, and, in addition, $|F H|=\sqrt{3}\left|M_{a} M_{c}\right|$.
d. Equilateral triangles $E W F, F X G, G Y H$, and $H Z E$ are oppositely oriented with respect to $A B C D$. Prove that quadrilaterals $A B C D$ and $W X Y Z$ have the same area.

Problem 17. Let $\ell(P, Q R)$ denote the line through point P perpendicular to line $Q R$. Say that $\triangle X Y Z$ perpendicularizes $\triangle A B C$ if $\ell(X, B C), \ell(Y, C A)$, and $\ell(Z, A B)$ concur at a point. If $\triangle X Y Z$ perpendicularizes $\triangle A B C$ and $\triangle D E F$, prove that $\triangle X Y Z$ also perpendicularizes any linear combination of $\triangle A B C$ and $\triangle D E F$.

Problem 18 (Alex Zhai).
a. In triangle $A B C, A D, B E$, and $C F$ are altitudes. D_{c} and D_{b} are the projections of D onto $A B$ and $A C$, respectively, and points E_{a}, E_{c}, F_{a}, and F_{b} are defined similarly. Prove that quadrilaterals $B D_{c} D_{b} C, C E_{a} E_{c} A$, and $A F_{b} F_{a} B$ are cyclic.
b. Let O_{A} be the center of circle $B D_{c} D_{b} C$, and let T_{a} be the midpoint of altitude $A D$. Similarly define O_{b}, O_{c}, T_{b}, and T_{c}. If O is the circumcenter of triangle $A B C$, show that $A O O_{a} T_{a}$ is a parallelogram, as well as $B O O_{b} T_{b}$ and $\mathrm{COO}_{c} T_{c}$.
c. Prove that lines $O_{a} T_{a}, O_{b} T_{b}$, and $O_{c} T_{c}$ are concurrent.

Problem 19. Let \mathcal{P} be a convex polygon in the plane. A real number is assigned to each point in the plane so that the sum of the number assigned to the vertices of any polygon similar to \mathcal{P} is equal to 0 . Prove that all the assigned numbers are equal to 0 .

Problem 20. Show that I, G, and N (the incenter, centroid, and Nagel point of a triangle) are collinear in that order with $2 \cdot I G=G N$. Hint: see problem 11 .

Problem 21. Given a convex quadrilateral $A B C D$, construct (with ruler and compass) a square of the same orientation with one vertex on each side of $A B C D$.

7 Solutions to Additional Problems

Problem 12. Recall problem 4: "Positively oriented equilateral triangles $X A B, X C D$, and $X E F$ share a vertex X. If P, Q, and R are the midpoints of $B C, D E$, and $F A$ respectively, prove that $P Q R$ is equilateral." Prove this problem using Napoleon's Theorem.

Solution. In diagram 26, triangles $B C J, D E K, F A L$ are equilateral, and G, H, I, M, N, O are the centers of their respective triangles. By napoleon's theorem thrice, $\triangle H G M, \triangle I H N$, and $\triangle G I O$ are equilateral, and their centers T, U, V are also the centroids of $\triangle X B C, \triangle X D E$, and $\triangle X F A$ respectively (by problem 3). Again by napoleon's theorem (on the blue triangles), $\triangle T U V$ is equilateral, and the dilation ${ }^{3 / 2} X$ carries $\triangle T U V$ to $\triangle P Q R$.

Figure 27: Problem 13

Figure 28: Problem 14.c

Figure 26: Problem 12

Problem 13 (Crux Mathematicorum). A line parallel to the side $A C$ of equilateral $\triangle A B C$ intersects $B C$ at M and $A B$ at P, thus making $B M P$ equilateral as well. D is the center of $B M P$ and E is the midpoint of $C P$. Determine the angles of $A D E$.

Solution. S and T are the midpoints of $C B$ and $C A$, and X is the center of $\triangle A B C$. Let $B P / B A=k$. Because E must lie on line $S T$, and since $\triangle C S T \sim \triangle C B A, S E / S T=B P / B A=k$. Also, since $\triangle B P D \sim \triangle B A X$, $B D / B X=B P / B A=k$. Thus, $(1-k) A B S+(k) A X T=A D E$, so $\triangle A D E$ is a $30-60-90$ triangle.

Problem 14. The following theorem appears in Geometry Revisited [5] as a special case of a theorem of Petersen and Schoute: If $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are two directly similar triangles, while $A A^{\prime} A^{\prime \prime}, B B^{\prime} B^{\prime \prime}, C C^{\prime} C^{\prime \prime}$ are three directly similar triangles, then $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is directly similar to $\triangle A B C$.
a. Show that this theorem generalizes the triangle version of MGT.
b. What minor adjustment can be made to the statement of MGT to account for this generalization (and it's proof)?
c. Show that Napoleon's theorem is a special case of this theorem.

Solution. a. In the special case where $A^{\prime \prime}$ is on line $A A^{\prime}$, the similarity of degenerate triangles $A A^{\prime} A^{\prime \prime}, B B^{\prime} B^{\prime \prime}$, and $C C^{\prime} C^{\prime \prime}$ simply means that $A A^{\prime \prime} / A A^{\prime}=B B^{\prime \prime} / B B^{\prime}=C C^{\prime \prime} / C C^{\prime}=k$. Now, the fact that $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is similar to

Figure 29: Van Aubel's Theorem
$A B C$ is exactly the statement of MGT, since

$$
(1-k) A B C+(k) A^{\prime} B^{\prime} C^{\prime}=A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} .
$$

b. In the complex number proof of MGT (section 2.2), we required the two weights k and $1-k$ to be real numbers that add to 1 . If we allow the weights to be complex, we obtain this generalization. The proof in section 2.2 remains unchanged.
c. The napoleon diagram has been relabeled in figure 28 to show the correspondence.

Problem 15 (Van Aubel's Theorem). Given an arbitrary planar quadrilateral, place a square outwardly on each side, and connect the centers of opposite squares. Then these two lines perpendicular and of equal length.

Solution. Q, R, S, and T are the midpoints of the sides of quadrilateral $M N O P$. Since $\frac{1}{4}(A+F+G+C)=$ $\frac{1}{2}(M+N)=Q$, and likewise around, averaging the four given squares proves that $Q R S T$ is itself a square:

$$
\frac{1}{4} F B A E+\frac{1}{4} G H C B+\frac{1}{4} C I J D+\frac{1}{4} A D K L=Q R S T .
$$

Since $\overrightarrow{\mathbf{M O}}=2 \overrightarrow{\mathbf{T S}}$ and $\overrightarrow{\mathbf{P N}}=2 \overrightarrow{\mathbf{T Q}}$, and since $T S$ and $T Q$ are equal in length and perpendicular, diagonals $M O$ and $N P$ must share this property, as desired.

Problem 16. Equilateral triangles $A E B, B F C, C G D, D H A$ are erected outwardly on the sides of a plane quadrilateral $A B C D$.
a. Let M, N, O, and P be the midpoints of segments $E G, H F, A C$, and $B D$ respectively. What is the shape of PMON?
b. M_{d} and M_{a} are the centroids of $\triangle D A H$ and $\triangle A E B$, and equilateral triangle $M_{d} T M_{a}$ is oppositely oriented with respect to $A B C D$. Find the angles of triangle $F T G$.
c. M_{a} and M_{c} are the centroids of $\triangle A E B$ and $\triangle C G D$. Prove that segments $M_{a} M_{c}$ and $F H$ are perpendicular, and, in addition, $|F H|=\sqrt{3}\left|M_{a} M_{c}\right|$.
d. Equilateral triangles $E W F, F X G, G Y H$, and $H Z E$ are oppositely oriented with respect to $A B C D$. Prove that quadrilaterals $A B C D$ and $W X Y Z$ have the same area.

Figure 30: Problem 16.a

Figure 32: Problem 16.c

Figure 31: Problem 16.b

Figure 33: Problem 16.d

Solution. a. Since $\frac{1}{2} A B E+\frac{1}{2} C D G=O P M$ and $\frac{1}{2} B C F+\frac{1}{2} D A H=P O N$, triangles $\triangle O P M$ and $\triangle P O N$ are equilateral, so quadrilateral $M O N P$ is a rhombus with vertex angles of 60° and 120°.
b. By Napoleon's theorem on triangle $D A B, T$ must be the center of the equilateral triangle erected on side $D B$, i.e. $\triangle D T B$ is a $30-120-30$ triangle. Now apply problem 9 to quadrilateral $D B F G$. Point C has $\angle G D C=\angle F B C=60^{\circ}$ and $\angle D G C=\angle B F C=60^{\circ}$, so problem 9 guarantees the existence of a point Y on the perpendicular bisectors of $D B$ and $F G$ so that $\angle D Y B=\angle G Y F=120^{\circ} . T$ is on the perpendicular bisector of $D B$ and has $\angle D T B=120^{\circ}$, so T is Y, and thus $\triangle G T F$ is a $30-120-30$ triangle.
c. This solution mimics the proof of Van Aubel's Theorem (problem 15). Erect rectangles $J B A I, K L C B, C M N D$, and $A D O B$ with $\sqrt{3}: 1$ side ratios as shown. The average of these four rectangles (with vertices in the listed order) is rectangle $W X Y Z$ (not shown) which connects the midpoints of the sides of quadrilateral $M_{a} F M_{c} H$ and which must be similar to the red rectangles. And as explained in problem 15, since the Varignon Parallelogram [5, Theorem 3.11] of quadrilateral $M_{a} F M_{c} H$ has sides that are perpendicular with a ratio of $\sqrt{3} / 1$, the diagonals $F H$ and $M_{a} M_{c}$ must have this property too.
d. Recall from problem 8 that, with C as center, $\triangle D G C+\triangle B C F=\triangle X G F$, proving that $D+B=X$ and so $X D C B$ is a parallelogram. Likewise, $A D C Y$ is a parallelogram. Segments $X B$ and $A Y$ are both parallel and congruent to $D C$, so $X A Y B$ is a parallelogram, and $A B$ and $X Y$ share the same midpoint P. The same goes for Q, R, and S. Thus, quadrilaterals $A B C D$ and $W X Y Z$ have the same Varignon Parallelogram $P Q R S$, so $\operatorname{area}(A B C D)=2 \cdot \operatorname{area}(P Q R S)=\operatorname{area}(W X Y Z)$.

Problem 17. Let $\ell(P, Q R)$ denote the line through point P perpendicular to line $Q R$. Say that $\triangle X Y Z$ perpendicularizes $\triangle A B C$ if $\ell(X, B C), \ell(Y, C A)$, and $\ell(Z, A B)$ concur at a point. If $\triangle X Y Z$ perpendicularizes $\triangle A B C$ and $\triangle D E F$, prove that $\triangle X Y Z$ also perpendicularizes any linear combination of $\triangle A B C$ and $\triangle D E F$.

Solution. The following lemma is key: $\triangle X Y Z$ perpendicularizes $\triangle A B C$ if and only if $\triangle A B C$ perpendicularizes $\triangle X Y Z$. To finish problem 17 with this property, note that if $X Y Z$ perpendicularizes $A B C$ and $D E F$, then both $A B C$ and $D E F$ perpendicularize $X Y Z$, say at points P and Q respectively. Define $G H I=\omega_{1} A B C+\omega_{2} D E F$ and $R=\omega_{1} P+\omega_{2} Q$. Segment $G R$ - as a linear combination of $A P$ and $D Q$ - is perpendicular to $Y Z$, and likewise for $H R$ and $I R$. So $G H I$ perpendicularizes $X Y Z$ at R, and the above lemma guarantees that $X Y Z$ must perpendicularize $G H I$.

We offer two very different proofs of the lemma.
Proof 1. We'll make use of the following property: lines $P Q$ and $R S$ are perpendicular if and only if $P R^{2}+Q S^{2}=$ $P S^{2}+Q R^{2}$. Indeed, using • as the vector dot product,

$$
(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{R}}) \cdot(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{R}})+(\overrightarrow{\mathbf{Q}}-\overrightarrow{\mathbf{S}}) \cdot(\overrightarrow{\mathbf{Q}}-\overrightarrow{\mathbf{S}})=(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{S}}) \cdot(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{S}})+(\overrightarrow{\mathbf{Q}}-\overrightarrow{\mathbf{R}}) \cdot(\overrightarrow{\mathbf{Q}}-\overrightarrow{\mathbf{R}})
$$

is equivalent to $(\overrightarrow{\mathbf{P}}-\overrightarrow{\mathbf{Q}}) \cdot(\overrightarrow{\mathbf{R}}-\overrightarrow{\mathbf{S}})=0$ after expanding and simplifying.
For two triangles $A B C$ and $X Y Z$ in the plane, let $\ell(Y, A C)$ and $\ell(Z, A B)$ meet at $Q . \triangle X Y Z$ perpendicularizes $\triangle A B C$ if and only if $X Q \perp B C$, i.e. if and only if

$$
\begin{aligned}
0 & =\left(C Q^{2}-Q B^{2}\right)+\left(B X^{2}-X C^{2}\right) \\
& =\left(C Q^{2}-Q A^{2}\right)+\left(B X^{2}-X C^{2}\right)+\left(A Q^{2}-Q B^{2}\right) \\
& =\left(C Y^{2}-Y A^{2}\right)+\left(B X^{2}-X C^{2}\right)+\left(A Z^{2}-Z B^{2}\right)
\end{aligned}
$$

But this last expression makes no distinction between triangles $A B C$ and $X Y Z$, so if one triangle perpendicularizes another, the other must perpendicularize the first.

Figure 34: Proof 2 of perpendicularization lemma

Proof 2. Assume $\triangle X Y Z$ perpendicularizes $\triangle A B C$ at point Q. Draw three lines: line ℓ_{a} through X parallel to $B C$, line ℓ_{b} through Y parallel to $C A$, and line ℓ_{c} through Z parallel to $A B$. These lines determine triangle $A^{\prime} B^{\prime} C^{\prime}$ homothetic to $\triangle A B C$, and so $A B C$ perpendicularizes $X Y Z$ if and only if $A^{\prime} B^{\prime} C^{\prime}$ does.

Let L, M, N be the projections of $A^{\prime}, B^{\prime}, C^{\prime}$ onto $Y Z, Z X, X Y$ respectively. Quadrilateral $A^{\prime} Z Q Y$ is cyclic, so we may calculate

$$
\angle C^{\prime} A^{\prime} L=90^{\circ}-\angle Z Y A^{\prime}=90^{\circ}-\angle Z Q A^{\prime}=\angle Q A^{\prime} B^{\prime}
$$

and likewise for $B^{\prime} M$ and $C^{\prime} N$. Thus,

$$
\frac{\sin \angle C^{\prime} A^{\prime} L}{\sin \angle L A^{\prime} B^{\prime}} \cdot \frac{\sin \angle A^{\prime} B^{\prime} M}{\sin \angle M B^{\prime} C^{\prime}} \cdot \frac{\sin \angle B^{\prime} C^{\prime} N}{\sin \angle N C^{\prime} A^{\prime}}=\frac{\sin \angle Q A^{\prime} B^{\prime}}{\sin \angle C^{\prime} A^{\prime} Q} \cdot \frac{\sin \angle Q B^{\prime} C^{\prime}}{\sin \angle A^{\prime} B^{\prime} Q} \cdot \frac{\sin \angle Q C^{\prime} A^{\prime}}{\sin \angle B^{\prime} C^{\prime} Q}=1
$$

i.e. $A^{\prime} L, B^{\prime} M$, and $C^{\prime} N$ do in fact concur by the trigonometric form of Ceva's theorem. (They concur at the isogonal conjugate of Q with respect to triangle $A^{\prime} B^{\prime} C^{\prime}$.)

Problem 18 (Alex Zhai).

a. In triangle $A B C, A D, B E$, and $C F$ are altitudes. D_{c} and D_{b} are the projections of D onto $A B$ and $A C$, respectively, and points E_{a}, E_{c}, F_{a}, and F_{b} are defined similarly. Prove that quadrilaterals $B D_{c} D_{b} C, C E_{a} E_{c} A$, and $A F_{b} F_{a} B$ are cyclic.
b. Let O_{A} be the center of circle $B D_{c} D_{b} C$, and let T_{a} be the midpoint of altitude $A D$. Similarly define O_{b}, O_{c}, T_{b}, and T_{c}. If O is the circumcenter of triangle $A B C$, show that $A O O_{a} T_{a}$ is a parallelogram, as well as $B O O_{b} T_{b}$ and $C O O_{c} T_{c}$.
c. Prove that lines $O_{a} T_{a}, O_{b} T_{b}$, and $O_{c} T_{c}$ are concurrent.

Solution. a. By similar triangles $A D_{c} D$ and $A D B, A D_{c} / A D=A D / A B$, i.e. $\left(A D_{c}\right)(A B)=(A D)^{2}$. Likewise, $\left(A D_{b}\right)(A C)=(A D)^{2}=\left(A D_{c}\right)(A B)$, so $B D_{c} D_{b} C$ is cyclic by the converse of power-of-a-point. Similar arguments work for the other two quadrilaterals.

Figure 35: Problem 18.b

Figure 36: Problem 18.c
b. $A T_{a}$ and $O O_{a}$ are parallel because they are both perpendicular to $B C$, so it is only necessary to show they have the same length. Project T_{a}, O_{a}, and O onto $A B$ at points $T_{a}^{\prime}, O_{a}^{\prime}$, and M_{c}, which must be the midpoints of $A D_{c}, A B$, and $D_{c} B$ respectively. We have $T_{a}^{\prime} A=D_{c} A / 2$ and $O_{a}^{\prime} M_{c}=B M_{c}-B O_{a}^{\prime}=\left(B D_{c}+D_{c} A\right) / 2-\left(B D_{c}\right) / 2=D_{c} A / 2$. Since the projections of $T_{a} A$ and $O_{a} O$ onto $A B$ are equal in length, and since $B A$ and $A D$ are not perpendicular, $T_{a} A=O_{a} O$, as desired.
c. It can be calculated that $\angle O A C+\angle A E F=(90-\angle C B A)+(\angle C B A)=90$, so $A O \perp E F$, i.e. $O_{a} T_{a} \perp E F$. Thus, we wish to prove that $O_{a} O_{b} O_{c}$ perpendicularizes $D E F$ (see problem 17).

Let the midpoints of $B C, C A, A B$ be M_{a}, M_{b}, M_{c}, and let H be the orthocenter of $A B C$. Since $M_{a} M_{b} M_{c}$ is similar to $A B C$ with half its size, and since O is the orthocenter of $M_{a} M_{b} M_{c}, O M_{a}=\frac{1}{2} A H$. Since we have already proved that $O O_{a}=\frac{1}{2} A D$, it follows that $M_{a} O_{a}=\frac{1}{2} H D$. So with H as origin, $O_{a} O_{b} O_{c}=M_{a} M_{b} M_{c}+\frac{1}{2} D E F$, i.e. $D E F=2 O_{a} O_{b} O_{c}-2 M_{a} M_{b} M_{c}$. And since $O_{a} O_{b} O_{c}$ perpendicularizes $M_{a} M_{b} M_{c}$ (at O) and $O_{a} O_{b} O_{c}$ (at its own orthocenter), triangle $O_{a} O_{b} O_{c}$ must perpendicularize the linear combination $2 O_{a} O_{b} O_{c}-2 M_{a} M_{b} M_{c}=D E F$ by problem 17, as desired.

Problem 19. Let \mathcal{P} be a convex polygon in the plane. A real number is assigned to each point in the plane so that the sum of the number assigned to the vertices of any polygon similar to \mathcal{P} is equal to 0 . Prove that all the assigned numbers are equal to 0 .

Solution. Let $f(T)$ be the number associated with point T in the plane.
The idea is to use an extended version of problem 14 (illustrated for $n=4$ in diagram 37), and then to let one of the polygons shrink to a single point X (figure 38).

Figure 37: Generalization of problem 14

Figure 38: Problem 19

An arbitrary point X is chosen, polygon $\mathcal{R}_{1}=A_{1,1} A_{1,2} \cdots A_{1, n}$ similar to \mathcal{P} is drawn with no vertices at X, and then polygons $\mathcal{B}_{i}=A_{1, i} A_{2, i} \cdots A_{n-1, i} X(1 \leq i \leq n)$ are drawn all similar to \mathcal{P}. It follows that each polygon $\mathcal{R}_{i}=A_{i, 1} A_{i, 2} \cdots A_{i, n}(1 \leq i \leq n-1)$ is also similar to \mathcal{P} (see problem 14). Thus, since $\sum_{b \in B_{i}} f(b)=0$ and $\sum_{r \in R_{j}} f(r)=0$ for any $1 \leq i \leq n$ and $1 \leq j \leq n-1$, we can add over polygons \mathcal{B}_{i} and over polygons \mathcal{R}_{i} to cancel out most of the terms:

$$
0=\sum_{i=1}^{n} \sum_{b \in \mathcal{B}_{i}} f(b)=n \cdot f(X)+\sum_{i=1}^{n} \sum_{j=1}^{n-1} f\left(A_{j, i}\right)=n \cdot f(X)+\sum_{j=1}^{n-1} \sum_{r \in \mathcal{R}_{j}} f(r)=n \cdot f(X)+0 .
$$

This means $f(X)=0$, and since point X was arbitrary, this holds for all points in the plane.
Problem 20. Show that I, G, and N (the incenter, centroid, and Nagel point of a triangle) are collinear in that order with $2 \cdot I G=G N$. Hint: see problem 11.

Solution. Refer to figure 25 in problem 11. With origin P, define $D^{\prime} E^{\prime} F^{\prime}=-2 D E F$ and $D_{1}^{\prime} E_{1}^{\prime} F_{1}^{\prime}=-D_{1} E_{1} F_{1}$. These are the triangles used - but never drawn - in equation $\left(\star^{\prime}\right)$ on page 17 , and they are translations of $A B C$ and $Q R S$ respectively. Also set $X=2 D$. Since $\overrightarrow{\mathbf{A Q}}=\overrightarrow{\mathbf{P D}_{\mathbf{2}}}=\overrightarrow{\mathbf{D}_{\mathbf{1}} \mathbf{X}}=\overrightarrow{\mathbf{D}^{\prime} \mathbf{Q}^{\prime}}$, it follows that triangles $D^{\prime} E^{\prime} F^{\prime}$ and $Q^{\prime} R^{\prime} S^{\prime}$ are in the same relative position as $A B C$ and $Q R S$, i.e. $\overrightarrow{\mathbf{A D}^{\prime}}=\overrightarrow{\mathbf{Q D}_{\mathbf{1}}^{\prime}}$. And since $\overrightarrow{\mathbf{A D}^{\prime}}=3 \overrightarrow{\mathbf{G P}}$ (since $A D D^{\prime} \sim G D P$) and $\overrightarrow{\mathbf{Q D}_{1}^{\prime}}=2 \overrightarrow{\mathbf{I P}}$ (since $Q D_{1} D_{1}^{\prime} \sim I D_{1} P$), the conclusion follows.

Problem 21. Given a convex quadrilateral $A B C D$, construct (with ruler and compass) a square of the same orientation with one vertex on each side of $A B C D$.

Solution. First, we prove that it is impossible for $A B \perp C D$ and $A D \perp B C$ to occur simultaneously. Assume this does happen, label $A B \cap C D=X$ and $A D \cap B C=Y$, and assume (without loss of generality) that C is between X and D and between Y and B. Then

$$
360^{\circ}>\angle B+\angle C+\angle D=540^{\circ}-\angle C>360^{\circ}
$$

contradiction. So it is safe to assume $B C$ is not perpendicular to $D A$.
Given a point $P_{i} \in A B$, construct square $\square_{i}=P_{i} Q_{i} R_{i} S_{i}$ as follows: rotate line $D A$ clockwise by 90° around P_{i} to intersect $B C$ at Q_{i} (this intersection exists uniquely since $B C \not \perp D A$), and complete positively oriented square

Figure 39: Problem 20

Figure 40: Problem 21
$P_{i} Q_{i} R_{i} S_{i}$. This square with vertex P_{i} has the properties that $Q_{i} \in B C$ and $S_{i} \in D A$ (by rotation), and furthermore, the construction proves that such a square is unique. Now it is only necessary to find the right $P \in A B$ so that the corresponding R lies on $C D$.

Choose two distinct points $P_{0}, P_{1} \in A B$ and draw squares \square_{0} and \square_{1} as above. Choose any other point $P_{t}=(1-t) P_{0}+(t) P_{1}$ on $A B$, and consider $\square_{t}^{\prime}=P_{t} Q_{t}^{\prime} R_{t}^{\prime} S_{t}^{\prime}=(1-t) \square_{0}+(t) \square_{1}$. Since $Q_{t}^{\prime} \in Q_{0} Q_{1} \equiv B C$ and $S_{t}^{\prime} \in S_{0} S_{1} \equiv D A$, square \square_{t}^{\prime} satisfies the defining conditions for \square_{t}, i.e. $\square_{t}=\square_{t}^{\prime}$. In particular, $R_{t}=R_{t}^{\prime}=$ $(1-t) R_{0}+(t) R_{1}$, meaning R_{t} must lie on line $R_{0} R_{1}$. And since R_{t} covers all of this line as t varies, the locus of such points is exactly this line, i.e. $R=C D \cap R_{0} R_{1}$. The rest of the square can no be constructed now that the correct ratio $t=R_{0} R / R_{0} R_{1}$ is known.

There are a few exceptional cases to consider. If line $R_{0} R_{1}$ and line $C D$ are identical, any point $P_{t} \in A B$ will produce a viable square \square_{t}. If the two lines are parallel but not equal, there is no square with the desired properties. And finally, if $R_{0}=R_{1}$, then $R_{t}=R_{0}$ for all t, so all P_{t} work or no P_{t} work depending on whether or not R_{0} is on line $C D$.

References

[1] Andreescu, T. and Gelca, R. Mathematical Olympiad Challenges. Boston, MA: Birkhäuser, 2002.
[2] Bogomolny, A. "Asymmetric Propeller." http://www.cut-the-knot-org/Curriculum/Geometry/ AsymmetricPropeller.shtml
[3] Bogomolny, A. "A Problem in an Equilateral Triangle." http://www.cut-the-knot.org/Curriculum/ Geometry/RightInEquilateral.shtml
[4] Bogomolny, A. "Three Similar Triangles." http://www.cut-the-knot.org/Curriculum/Geometry/ SimilarTriangles.shtml
[5] Coxeter, H.S.M and Greitzer, S.L. Geometry Revisited. Washington, DC: Math. Assoc. Amer., 1967.
[6] Engel, A. Problem Solving Strategies. New York: Springer, 1998.
[7] Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., 1995.
[8] Weisstein, Eric W. "Nagel Point." From Mathworld-A Wolfram Web Resource. http://mathworld.wolfram. com/NagelPoint.html

[^0]: ${ }^{1}$ i.e. a rotation through an angle θ followed by a dilation with ratio r, both centered at the point O

[^1]: ${ }^{2}$ Please pardon the unintentional alliteration.

[^2]: ${ }^{3}$ As a notable special case, $\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$ is the centroid of triangle $P_{1} P_{2} P_{3}$.

[^3]: ${ }^{4}$ In problem 4 , the middle triangle has degenerated into point X. In problem 5 , one of the outside triangles degenerates into point F.

[^4]: ${ }^{5}$ Remember that negative weights are allowed, as long as the weights add to 1 .

[^5]: ${ }^{6}$ If this circle intersected line $M B$ at some other point B^{\prime}, then power of a point would show that $(M B)^{2}=(M A)(M P)=$ $(M B)\left(M B^{\prime}\right)$, so $M B=M B^{\prime}$ and $B=B^{\prime}$.

[^6]: ${ }^{7}$ The Nagel point is also (and less commonly) known as the bisected perimeter point [8] or the splitting center [7], since the cevians $A D_{2}$, etc., bisect the perimeter of the triangle, i.e. $A B+B D_{2}=A C+C D_{2}=s$.

