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1. Introduction

In this paper we introduce the notion of the theta series ΘL of a lattice L, a useful and powerful tool

in Lattice theory, especially in the case when the underlying lattice is assumed to be even and unimodular.

Recall that a lattice L is even if for all vectors x ∈ L, the norm 〈x, x〉 = ‖x‖2 is an even integer, and the

lattice L of rank n is unimodular if its fundamental domain has volume vol(Rn/L) = 1, or equivalently, if

L = L∗.

In section 2 we define the theta series of a lattice L and provide an example for the lattice L = A2. We

introduce the modular group and modular forms in section 3, and then prove that when L is an even

unimodular lattice, ΘL assumes the structure of a modular form. Results relating to Eisenstein series and

the classification of modular forms are detailed in 4, and finally, we illustrate the power of theta series by

proving the uniqueness of E8 as a unimodular lattice of rank 8 in section 5.

2. What is a Theta Series?

2.1. Definition. For a given lattice L, we define a generating function that counts the number of vectors

in L having a given norm. Specifically, if Ar denotes the number of vectors in L with norm r, we define

(1) ΘL(q) =
∑
x∈L

q
1
2 〈x,x〉 =

∑
`

A2`q
`.

The reason for the factor of 1
2 in the exponent will shortly become evident.

A lattice’s theta series encodes the distribution of vector norms in the lattice L. Note however that it

does not encode all information about the lattice: for example, the nonisomorphic lattices E8⊕E8 and D+
16

have identical theta series, so L cannot always be reconstructed uniquely from ΘL.

2.2. An Example: A2. As an example, consider ΘA2(q), the theta series of the 2-dimensional hexagonal

lattice. From Figure 1, we see that there is a single vector of norm 0, six of norm 1, none of norm 2 (remember

that vectors of length 2 have norm 22 = 4), 6 of norm 3, etc. Therefore, the theta series begins

ΘA2(q) = 1 + 6q
1
2 + 0q1 + 6q

3
2 + 6q2 + · · · .

In general, the coefficient of q
n
2 will be the number of ordered pairs of integers (a, b) such that

∣∣a+ b ·eπi
3
∣∣2 =

a2 + ab + b2 = n. However, this only gives a characterization of ΘA2(q) using information from the lattice

A2 itself. In order to make use of the theta series, we would prefer to learn about A2 from its theta series,

not the other way.

Thus, we seek other methods for computing theta series. In the special case when the lattice L is assumed

even and unimodular, such a computation is particularly easy when one considers the theta series not as a

formal algebraic object — a generating function — but instead as an analytic function. We write q = e2πiz
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Figure 1. Vector norms in the Hexagonal lattice.

for z in the upper half plane H = {z ∈ C | Im(z) > 0} of complex numbers, and consider ΘL as a function

of z:

ΘL(z) =
∑
x∈L

e2πiz· 12 〈x,x〉 =
∑

`

A`e
πiz`.

The usefulness comes from the following property:

Theorem 1. If L is an even unimodular lattice of rank n, then ΘL(z) is a modular form of weight n
2 .

This Theorem is explained and proven in the following section.

3. What are Modular Forms?

3.1. Modular Group. Intuitively, modular forms are functions that behave well under a certain action

from the modular group. So we must first discuss the modular group G.

Let H = {z ∈ C | Im(z) > 0} be the Poincaré upper half plane as above. The group SL2(Z) consisting of

2× 2 matrices over Z with determinant 1 acts on H by means of the following map:

SL2(Z)×H → H,

(
a b

c d

)
, z 7→ az + b

cz + d
.

This indeed maps into H, because for
(

a b
c d

)
∈ SL2(Z) we have Im

(
az+b
cz+d

)
= Im(z)

|cz+d|2 , which is positive if Im(z)

itself is. As both I2 = ( 1 0
0 1 ) and −I2 act trivially on H, there is an induced action of SL2(Z)/{±I2} = G on

H. This group G is the modular group. (As a notational convention, a matrix M ∈ SL2(Z) is also used to

denote its coset {M,−M} ∈ G.)

We single out two elements of G:

S =

(
0 −1

1 0

)
, z 7→ −1

z
, and T =

(
1 1

0 1

)
, z 7→ z + 1.

Geometrically, S acts by the inversion in the unit circle composed with reflection in the imaginary axis, and

T shifts one unit to the right. These elements can be seen to satisfy S2 = 1 and (TS)3 = 1.

The region D = {z ∈ H | − 1
2 ≤ Im(z) ≤ 1

2 and |z| ≥ 1}, shaded in Figure 2, is known as the fundamental

domain for the Modular group, for the following reason (stated without proof):

Theorem 2. [4, p.78] For every z ∈ H, there exists g ∈ G such that gz ∈ D. Furthermore, if two points z

and z′ of D are congruent modulo G, then Re(z) = ± 1
2 and z′ = z ± 1, or |z| = 1 and z′ = −1/z, or z = z′.

In figure 2, the repeated actions of S and T on D are illustrated. Graphically, it seems that the actions

of S and T on D cover the entire half-plane, i.e. for every point z ∈ H, there is some element g in the ideal

generated by S and T so that gz ∈ D. In fact, much more can be said:
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Figure 2. The fundamental domain for the action of G on the half plane.

Theorem 3. The elements S and T generate the modular group.

Proof. Let G′ be the ideal generated by S and T ; we wish to show that G′ = G. We begin by proving the

fact stated above, i.e. for every z ∈ H there is some element g ∈ G′ with gz ∈ D. Suppose that for some

z = x + iy this was not the case. Let a be an integer so that − 1
2 ≤ a + x ≤ 1

2 , i.e. − 1
2 ≤ Re(T a(z)) ≤ 1

2 . If

y ≥ 1/2, then T a(z) is in one of the regions labelled 1, S, ST , or ST−1 in figure 2, so if g is this label, then

g−1 · T a ∈ G′ is the desired element of G′ that sends z into D. Otherwise, consider ST a(z). Its imaginary

part is y
(a+x)2+y2 ≥ y

1
4+y2 ≥ 2y, where the final inequality relies on y ≤ 1

2 . Thus, we can repeat this process

until the imaginary part is at least 1
2 , and then finish as before.

Now we can prove the Theorem. Given an element m ∈ G, consider the value m(2i) ∈ H. By the above

property, there is some element g ∈ G′ so that g(m(2i)) ∈ D. This means that 2i and gm(z) — both elements

of D — are equivalent modulo G, and since 2i is not on the boundary of D, it follows that gm(2i) = 2i,

from which it follows easily that gm = 1. Thus, m = g−1 is in G′, as desired. �

In fact, it can be shown that S and T give the following presentation for the modular group:

G =
〈
S, T | S2, (TS)3

〉
.

3.2. Modular Forms. Intuitively, a modular form is a function f on H that behaves well under the action

of the modular group. Formally, a modular form of weight k (for a non-negative even integer k) it is a

holomorphic1 — i.e. everywhere complex differentiable — function f : H → C satisfying the following two

properties:

(a). f
(

az+b
cz+d

)
= (cz + d)k · f(z), and

(b). f has a power series expansion
∞∑

n=0
anqn in the variable q = e2πiz, i.e., f is holomorphic at infinity.

Since G is generated by elements S and T , property (a). above is equivalent to the following two properties:

(a.i). f(Tz) = f(z + 1) = f(z), and

1Notions from Complex Analysis have been suppressed in this paper. See [4] for reference.
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(a.ii). f(Sz) = f
(
− 1

z

)
= zk · f(z).

3.3. Even Unimodular Lattices. In this section we’ll prove the Theorem promised on page 2:

Theorem 1. If L is an even unimodular lattice of rank n, then ΘL(z) is a modular form of weight n
2 .

Note that

ΘL(z + 1) =
∑
x∈L

e2πiz 1
2 〈x,x〉 · e2πi 1

2 〈x,x〉 =
∑
x∈L

e2πiz 1
2 〈x,x〉 = ΘL(z),

so property (a.i) above holds easily. Likewise, from the definition in (1) and the fact that L is even, it is

clear that ΘL(z) is a power series in q, i.e. property (b) holds. It remains to show property (a.ii). While

doing this, we’ll also prove (and need!) a related fact:

Theorem 4. If L is an even unimodular lattice of rank n, then n ≡ 0 mod 8.

Finally, to prove these Theorems, we’ll need the following result of Jacobi relating the theta series of a

lattice L to that of its dual.

Theorem 5 (Jacobi’s Identity). For any lattice L, the following identity holds:

ΘL

(
−1

z

)
=
(z

i

)n
2 1

vol(Rn/L)
·ΘL∗(z).

This is a corollary of the celebrated Poisson summation formula; for details, see [2, p.47].

Proof of Theorem 4. Suppose L is even unimodular of rank n, and suppose n is not divisible by 8. The

lattices L ⊕ L or L ⊕ L ⊕ L ⊕ L are of rank 2n and 4n respectively, and they are also even unimodular.

Indeed, if A is a generator matrix for L, then

(
A 0

0 A

)
and


A 0 0 0

0 A 0 0

0 0 A 0

0 0 0 A


are generator matrices of L ⊕ L and L ⊕ L ⊕ L ⊕ L respectively, and clearly both of these matrices have

even elements along the diagonal and determinant 1 if A itself does. Thus, by replacing L by L ⊕ L or

L⊕ L⊕ L⊕ L if necessary, we may assume that the rank n is congruent to 4 mod 8.

Since L∗ = L and vol(Rn/L) = 1, Theorem 5 applied to L becomes ΘL(Sz) = −z
n
2 ΘL(z), and since we

also know that ΘL is invariant under action by T , this implies

ΘL((TS)z) = −z
n
2 ΘL(z).

Iterating this three times gives

ΘL(z) = ΘL((TS)3) = −((TS)2z)
n
2 ΘL((TS)2z) = · · · = −(−1)

n
2 ΘL(z) = −ΘL(z).

But this implies that ΘL(z) is identically zero, i.e. L is empty! Thus, n must indeed be divisble by 8. �

Now we can complete the proof of Theorem 1.

Proof of Theorem 1. Recall that we have shown properties (a.i) and (b), so it simply remains to demonstrate

property (a.ii). But with the knowledge that n is divisble by 8, this follows directly from Jacobi’s identity:

ΘL

(
− 1

z

)
= z

n
2 ΘL(z). �
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4. Space of Modular Forms

Now that we know that an even unimodular lattice gives rise to a modular form, we will explore what is

known about modular forms themselves.

4.1. Eisenstein Series. The simplest examples of modular forms are the Eisenstein series. For an even

integer k ≥ 4, consider the following sum:

Gk(z) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(mz + n)k

.

Theorem 6. The Eisenstein series Gk(z) is a modular form of weight k for any even integer k ≥ 4.

Proof. We will verify properties (a.i) and (a.ii), and refer the interested reader to [2, p.49] for verification of

the holomorphicity properties. We can calculate

Gk(Tz) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(m(z + 1) + n)k

=
∑

(m′,n′)∈Z2

(m′,n′) 6=(0,0)

1
(m′z + n′)k

= Gk(z),

by making the substitution m′ = m and n′ = m + n, which is (a.i). Likewise,

Gk(Sz) =
∑

(m,n)∈Z2

(m,n) 6=(0,0)

1
(−m

z + n)k
= zn ·

∑
(m,n)∈Z2

(m,n) 6=(0,0)

1
(zn−m)k

= zn ·Gk(z),

where the final equality follows by shifting indices as above. This is (a.ii). �

It is useful to scale these series to have constant term 1 when written as a power series in q. To calculate

the required scaling factor, write Gk(z) =
∑

m≥0 amqm, and substitute z = it for a real variable t:

Gk(it) = a0 +
∑
m≥1

am · e−πtm.

As t limits to zero this tends to the desired a0, so we find

a0 = lim
t→∞

Gk(it) = lim
t→∞

∑
(m,n) 6=(0,0)

1
(mit + n)k

=
∑

n∈Z\{0}

1
nk

= 2ζ(k).

Thus we define the normalized Eisenstein Series Ek as 1
2ζ(k)Gk. Much can be shown about these series.

For example, it can be shown that

Theorem 7. [2, p.52] For an even integer k ≥ 4,

Ek(z) = 1− 2k

Bk

∞∑
m=1

σk−1(m)qm,

where Bk is the kth Bernoulli number and σ`(m) =
∑

d|m d` is the sum of the `th powers of the positive

divisors of m. In particular, we have

E4(z) = 1 + 240
∞∑

m=1

σ3(m)qm and E6(z) = 1− 504
∞∑

m=1

σ5(m)qm.

4.2. Classification. If f1 and f2 are modular forms of weight k and c ∈ C is a scalar, then it is clear that

c · f1 and f1 + f2 are also modular forms of weight k. This turns the space Mk of modular forms of weight k
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into a vector space over C. Likewise, if g is a modular form of weight `, then f1 · g is a form of weight k + `,

and this map turns M =
∞⊕

k=0

Mk into a graded algebra.

The Eisenstein series provided a series of simple examples of modular forms, but in fact, in one sense,

they encompass all possible modular forms! Indeed, we have the following complete classification of modular

forms:

Theorem 8. [2, p.60] The algebra M of modular forms is isomorphic to the polynomial algebra C[E4, E6]

of complex polynomials in the Eisenstein series E4 and E6, i.e., M = C[E4, E6].

In other words, any modular form of weight k is uniquely expressible as a weighted homogeneous polyno-

mial in E4 and E6. In particular, this implies that each Mk is a finite dimensional space. This is made more

explicit in the next Theorem.

Let M0
k denote the space of cusp forms of weight k, i.e. the space of weight-k modular forms with

constant term 0. Also define ∆ = 1
1728 (E3

4 − E2
6), which is a weight-12 cusp form. Then we have the

following explicit classification:

Theorem 9. [2, p.59]

(i). We have Mk = 0 for k odd, for k < 0, and for k = 2.

(ii). We have M0 = C, M0
0 = 0, and for k = 4, 6, 8, 10, M0

k = 0, Mk = C · Ek.

(iii). Multiplication by ∆ defines an isomorphism of Mk−12 onto M0
k .

5. Application: Uniqueness of E8

As an example, we can use theta series analysis to prove the uniqueness of the E8 lattice in the following

sense:

Theorem 10. If L is an even unimodular lattice of rank 8, then L ∼= E8.

Proof. [3]. Suppose L is even unimodular of rank 8. Then ΘL must be a modular form of weight 4 by

Theorem 1. The classification in Theorem 9 says that M4 is a one dimensional vector space spanned by the

Eisenstein series E4, so ΘL = c · E4 for some c ∈ C. But since the constant term of ΘL is 1 (the number of

vectors in L with norm 0), we must have c = 1, so that

ΘL = E4 = 1 + 240q + 2160q2 + 6720q3 + · · · .

Thus, L has 240 vectors of norm 2, 2160 vectors of norm 4, etc.

The sublattice 2L is a lattice of volume 28 = 256, so the group L/2L is of size 256. For x ∈ L, let Lx be

the coset represented by x in L/2L. We will enumerate those cosets represented by vectors of norm at most

4.

The trivial coset L0, namely 2L itself, contains no vectors of norm 2 or 4, as the smallest nonzero vectors

in 2L have norm at least 8.

Next consider the coset represented by a root v. If w is another root then v − w ∈ 2L implies that

v − w has norm 0 or 8, which can happen if and only if v = w or v = −w. Conversely, both v and −v

are indeed in Lv. Furthermore, if a ∈ L is a vector of norm 4, then I claim a 6∈ Lv. Indeed, if a − v ∈ 2L

then we must also have (a − v) + 2v = a + v ∈ 2L, and since a ± v are both nonzero, we would have

16 ≤ |v − a|2 + |v + a|2 = 2|v|2 + 2|a|2 = 12, contradiction. Thus, as there are 240 vectors of norm 2, there

are 240
2 = 120 cosets represented by roots, and furthermore these cosets do not include any norm 4 vectors.
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Finally consider the coset represented by a norm 4 element a. If b ∈ L is another norm 4 vector, then

|b − a|2 ≤ (|a| + |b|)2 = 16, so if b ∈ La we must have |b − a|2 = 0, 8, or 16. In the first case a = b, in the

second case a and b are orthogonal, and in the third case a = −b. So the norm 4 elements in La are mutually

orthogonal or parallel, and so there are at most 16 norm 4 vectors in this coset, since these 16 would form

an orthogonal frame for R8. As there are 2160 vectors in L of norm 4, there are at least 2160
16 = 135 such

cosets.

Since 1+120+135 = 256, the requisite number of cosets, the characterization above must include them all.

Further, we find that each coset La with |a|2 = 4 must indeed have 16 elements of norm 4 in an orthogonal

frame. Pick any one of these frames a1, . . . , a8,−a1, . . . ,−a8. The sublattice spanned by a1, . . . , a8, namely

(2Z)8, is certainly a sublattice of L. In fact, since ai ≡ aj mod 2L, we have ai − aj = 2v for some v ∈ L,

i.e. 1
2 (ai + aj) = aj + v ∈ L. This implies D8 ⊂ L, or (since L is unimodular), D8 ⊂ L ⊂ D∗

8 . But D8 is an

index 4 sublattice of D∗
8 , so it can be easily calculated that there are only two unimodular lattices between

D8 and D∗
8 , namely D8 ∪

(
D8 + 1

2 (a1 + · · · + a8)
)

and D8 ∪
(
D8 + 1

2 (−a1 + a2 + · · · + a8)
)
. Both of these

are isomorphic to D+
8
∼= E8. �
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